
UNIVERSIDAD POLITÉCNICA DE MADRID
Escuela Técnica Superior de Ingenieros Informáticos

A Uniform Approach to Language
Containment Problems

DOCTORAL THES I S
Submitted for the degree of Doctor by:

Kyveli Doveri
Master Degree in Mathematics

Madrid, 2023

UNIVERSIDAD POLITÉCNICA DE MADRID
Escuela Técnica Superior de Ingenieros Informáticos

Doctoral Degree in Software, Systems and Computing

A Uniform Approach to Language
Containment Problems

DOCTORAL THES I S
Submitted for the degree of Doctor by:

Kyveli Doveri
Master Degree in Mathematics

Under the supervision of:
Dr. Pierre Ganty

Madrid, 2023

Title: A Uniform Approach to Language Containment Problems
Author: Kyveli Doveri
Doctoral Programme: Doctorado en Software, Sistemas y Computación

Thesis Supervision:

Dr. Pierre Ganty, Associate Research Professor, IMDEA Software Institute (Supervisor)

External Reviewers:

Thesis Defense Committee:

Thesis Defense Date:

This work has been partially supported by PRODIGY Project (TED2021-132464B-I00) funded
by MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU/ PRTR

i

Acknowledgment
First and foremost, I would like to thank my advisor, Pierre Ganty. I am grateful for his
guidance and assistance, for his soothing calmness, and most of all for always having time for
me – no matter how busy he was I still felt heeded. His help was invaluable and I cannot be
more thankful for having such a dedicated advisor.

I would like to thank my co-authors, Francesco Parolini, Francesco Ranzato, Nicolas Mazzocchi,
Luka Hadži-Ðokić and B Srivathsan who directly contributed to this dissertation and I feel
absolutely fortunate working with them.

I am grateful to all my colleagues for the amazing and warm working environment and in
particular to Pedro and Elena for their help in the early stages of my doctorate. I thank
my friends Dania, Chana and Niki for all the wonderful moments we shared. A special
mention goes to Dimitris for both the enjoyable moments and his invaluable assistance with
the administrative aspects of the Ph.D. process. Last but not least I would like to thank my
dear Fedor for our endless discussions and for his consistent support.

iii

Abstract
We introduce an algorithmic framework to decide the language inclusion for languages of
infinite words. We define algorithms for different decidable cases like the inclusion between
(nondeterministic) Büchi automata, a PSpace-complete problem, and the inclusion between
Büchi Visibly Pushdown Automata, an EXPTime-complete problem. All our algorithms rely
on a least fixpoint characterization of the languages, leveraging ultimately periodic words, i.e.,
infinite words of the form uvω, with u as a finite prefix and v as a finite period of an infinite
word. They are parameterized by quasiorders, indicating which ultimately periodic words
need not be tested as counterexamples to inclusion without compromising completeness.

Our first algorithm for the inclusion between Büchi automata is called BAIT and uses
two quasiorders on finite words. BAIT is quite simple: it consists of two least fixpoint
computations, one for prefixes and the other for periods, manipulating finite sets of states.

Our second algorithm for the inclusion between Büchi automata is called FORKLIFT. Its
novelty is that it uses a family of quasiorders. We introduce FORQs (family of right quasiorders)
that we obtain by adapting the notion of a family of right congruences put forward by Maler
and Staiger in 1993. FORKLIFT consists of two fixpoints for the prefixes and an unbounded
number of fixpoints for the periods. Even though it computes more fixpoints, it scales up
better than BAIT and the state-of-the-art on a variety of benchmarks, including benchmarks
from program verification and theorem proving for word combinatorics.

Our third algorithm, called ωVPLInc, decides the inclusion between Büchi Visibly Pushdown
Automata. It uses a pair of quasiorders to prune the search for counterexamples to inclusion.
We also implemented our algorithm and conducted an empirical evaluation on benchmarks
from software verification.

Additionally, in this thesis we establish a Myhill- Nerode like theorem for specific subclasses of
timed languages accepted by one-clock timed automata. The well-known Nerode equivalence
for finite words plays a fundamental role in our understanding of the class of regular languages.
The equivalence leads to a canonical form, which in turn, is the basis of automata learning
algorithms. Such an equivalence has been studied for various subclasses of timed languages,
for instance, deterministic timed languages, and real-time languages (which are described by
a one-clock timed automaton that is reset in every transition). In this work, we consider the
subclass of timed automata with integer resets. This class is known to have good automata-
theoretic properties and is also useful for practical modeling. We present a Nerode-style
equivalence for this class that depends on a constant K and leads to the construction of a
canonical one-clock integer-reset timed automaton with maximum constant K.

iv

Resumen
Introducimos un marco algorítmico para decidir la inclusión de lenguajes de palabras infinitas.
Definimos algoritmos para diferentes casos decidibles como la inclusión entre autómatas (no
deterministas) Büchi, un problema PSpace-completo, y la inclusión entre autómatas Büchi
Visibly Pushdown, un problema EXPTime-completo. Todos nuestros algoritmos se basan en
una caracterización de punto fijo mínimo de los lenguajes, aprovechando palabras periódicas en
última instancia, es decir, palabras infinitas de la forma uvω, con u como prefijo finito y v como
período finito de una palabra infinita. Están parametrizados por cuasi-órdenes, indicando qué
palabras periódicas en última instancia no necesitan ser probadas como contraejemplos a la
inclusión sin comprometer la completitud.

Nuestro primer algoritmo para la inclusión entre autómatas Büchi se denomina BAIT y utiliza
dos cuasiórdenes sobre palabras finitas. BAIT es bastante sencillo: consiste en dos cálculos
de punto fijo mínimo, uno para prefijos y otro para períodos, manipulando conjuntos finitos
de estados.

Nuestro segundo algoritmo para la inclusión entre autómatas Büchi se llama FORKLIFT.
Su novedad es que utiliza una familia de cuasiórdenes. Introducimos FORQs (family of
right quasiorders) que obtenemos adaptando la noción de familia de congruencias derechas
propuesta por Maler y Staiger en 1993. FORKLIFT consta de dos puntos fijos para los
prefijos y un número ilimitado de puntos fijos para los períodos. A pesar de que calcula más
puntos fijos, se adapta mejor que BAIT y el estado de la técnica en una variedad de puntos
de referencia, incluyendo puntos de referencia de verificación de programas y demostración de
teoremas para la combinatoria de palabras.

Nuestro tercer algoritmo, llamado ωVPLInc, decide la inclusión entre autómatas Büchi Visibly
Pushdown. Utiliza un par de cuasi-órdenes para podar la búsqueda de contraejemplos a la
inclusión. También implementamos nuestro algoritmo y realizamos una evaluación empírica
en puntos de referencia de verificación de software.

Además, en esta tesis establecemos un teorema similar al de Myhill- Nerode para subclases
específicas de lenguajes temporizados aceptados por autómatas temporizados de un reloj.
La conocida equivalencia de Nerode para palabras finitas desempeña un papel fundamental
en nuestra comprensión de la clase de lenguajes regulares. La equivalencia conduce a una
forma canónica que, a su vez, es la base de los algoritmos de aprendizaje de autómatas. Dicha
equivalencia se ha estudiado para varias subclases de lenguajes temporizados, por ejemplo,
los lenguajes temporizados deterministas y los lenguajes en tiempo real (que se describen
mediante un autómata temporizado de un reloj que se reinicia en cada transición). En este
trabajo, consideramos la subclase de autómatas temporizados con reinicios enteros. Se sabe
que esta clase tiene buenas propiedades autómatas-teóricas y también es útil para el modelado
práctico. Presentamos una equivalencia al estilo de Nerode para esta clase que depende de
una constante K y conduce a la construcción de un autómata temporizado canónico de un
reloj con restablecimiento entero y constante máxima K.

v

Table of Contents

Acknowledgment . iii
Abstract . iv
Resumen . v
List of Figures . x
Abbreviations and acronyms . xi

1 INTRODUCTION 1
1.1 Formal Languages . 1
1.2 The Language Inclusion Problem . 2

1.2.1 Quasiorders for the Inclusion . 3
1.2.2 Starting Point: A Quasiorder-Based Framework 4
1.2.3 Extending the Framework . 5

1.3 A Myhill-Nerode Theorem for Timed Languages 7
1.4 Thesis Contributions . 9

1.4.1 Inclusion for Infinite Words . 9
1.4.2 Improved Inclusion with Families of Quasiorders 10
1.4.3 Inclusion for Visibly Pushdown Languages 10
1.4.4 A Myhill-Nerode Theorem for Timed Automata with Integer Resets . 11

2 RELATED WORKS 13

3 PRELIMINARIES 17
3.1 Words and Languages . 17
3.2 Well-Quasiorders, Kleene Iterates and Monotonicity 17
3.3 Finite Automata . 18
3.4 Pushdown Automata . 19
3.5 Context-free Grammar . 20
3.6 Visibly Pushdown Automata . 20
3.7 Timed Automata . 22

4 INCLUSION CHECKING OF LANGUAGES OF FINITE WORDS 25
4.1 Overview . 25
4.2 An Algorithmic Framework for Checking Inclusion 26

4.2.1 Reduction to a Finite Basis . 26
4.2.2 Fixpoint Characterization . 26

vii

4.2.3 Basis Detection . 27
4.3 Algorithm . 28

4.3.1 Antichains Optimization . 28
4.3.2 The Coarser the Better . 29

4.4 Quasiorders for Regular Languages . 29
4.4.1 State-based Quasiorders . 29
4.4.2 A Syntactic Quasiorder . 31

4.5 State-based Algorithms . 32
4.5.1 Data Structures . 32
4.5.2 Detailed Algorithm for 6B . 32
4.5.3 Illustrative Example . 34

5 INCLUSION FOR INFINITE WORDS 35
5.1 Overview . 35
5.2 Framework . 36

5.2.1 Fixpoint Characterization . 36
5.2.2 Basis Detection . 37
5.2.3 Algorithm . 37

5.3 Suitable Pairs of Quasiorders . 38
5.3.1 State-based Pairs . 38
5.3.2 A Syntactic Pair . 39

5.4 State-based Algorithm . 40
5.4.1 Fixpoint Computation . 40
5.4.2 Membership Check . 41
5.4.3 Algorithm and Complexity . 41
5.4.4 Illustrative Example . 42

5.5 Extension: ω-context free ⊆ ω-regular . 42
5.5.1 A Sufficient Subset of Decompositions 43
5.5.2 Fixpoint Computation of a Finite Basis 43

Quasiorders for the Context-Free Case 44

6 FORQ-BASED INCLUSION 45
6.1 Foundations . 45
6.2 The FORQ of a BA . 47
6.3 FORQ-based Algorithm . 49

6.3.1 Why a basis w.r.t. 6−1 is computed? 50
6.3.2 Complexity . 50

6.4 Discussions . 51
6.4.1 Origin of FORQ . 51
6.4.2 Less membership queries . 51

6.5 Implementation and experiments . 53
6.5.1 Experimental Evaluation . 54

7 INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES 59
7.1 Overview . 59

viii

7.2 Reduction to a Finite Basis . 60
7.2.1 A Sufficient Subset of Legitimate Decompositions 60
7.2.2 Reduction to a Finite Basis . 62

7.3 Fixpoint Characterization . 62
7.4 Monotonicity Requirements . 65
7.5 Quasiorders for ω-VPL . 66

7.5.1 A State-based Pair . 66
7.5.2 A Syntactic Pair . 68

7.6 Algorithm . 72
7.6.1 Antichains Everywhere . 73

7.7 State-based Algorithm . 74
7.7.1 Fixpoint Computation . 74
7.7.2 Membership Check . 74

7.8 Experiments . 76

8 A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS 79
8.1 Languages with Integer Resets . 79

8.1.1 The subclass of strict 1-IRTA . 80
8.2 Strict 1-IRDTA from Equivalence on Timed Words 82
8.3 A Myhill-Nerode Theorem for Languages with Integer Resets 83

8.3.1 Auxiliary Definitions . 84
8.3.2 Syntactic Equivalence . 86

8.4 Effectively Computing AL≈L,K . 89
8.5 Languages with No Resets . 91

8.5.1 1-NRTA from Equivalence on Timed Words 91
8.5.2 A Myhill-Nerode Theorem for Languages with No Resets 92

9 CONCLUSIONS 95
9.1 A Uniform Approach for Inclusion Problems 95

9.1.1 Two-Quasiorders Algorithms . 96
9.1.2 FORQ-based Algorithm . 96
9.1.3 Future Work . 96

9.2 A Myhill-Nerode Theorem for Timed Languages 97
9.2.1 Future Work . 97

9.3 Quasiorders in Action . 97

BIBLIOGRAPHY 99

ix

List of Figures

1.1 Example for Finite Automata with alphabet Σ = {0, 1} 1
1.2 Automaton equipped with a stack, with alphabet Σ = {0, 1} and stack alphabet

{A}. 2
1.3 Example for a Finite Automaton and for a Büchi Automaton with alphabet

Σ = {a, b}. 4
1.4 Timed Automaton accepting a language with infinitely many residuals. . . . 8
1.5 Timed Automaton showing that two words with the same residual languages

may never go to the same control state. 9

3.1 Inclusion problem between automata C and D with alphabet Σ = {a, b}. . . 19
3.2 Visibly Pushdown Automata with stack alphabet Γ = {A,⊥} and partitioned

alphabet Σi = ∅, Σc = {c} and Σr = {r}. 21

4.1 Family of inclusion problems showing the benefits of using the coarser quasiorders. 31

6.1 Example of Büchi Automata . 47
6.2 BAIT and FORKLIFT Evaluation . 58

7.1 omegaVPLinc Evaluation . 76

8.1 Example of One Clock Integer-Reset Timed Automaton 80
8.2 Example of One Clock Integer-Reset Deterministic Timed Automaton 89
8.3 Example of One Clock Never-Reset Timed Automaton 93

x

Abbreviations and acronyms

UPM Universidad Politécnica de Madrid

FA Finite Automaton

BA Büchi Automaton

PDA Pushdown Automaton

BPDA Büchi Pushdown Automaton

CFG Context-Free Grammar

VPA Visibly Pushdown Automaton

1-TA One-clock Timed Automaton

1-IRTA One-clock Integer Reset Timed Automaton

1-IRDTA One-clock Integer Reset Deterministic Timed Automaton

FORQ Family of Right Quasiorders

xi

Chapter 1

INTRODUCTION

In this thesis we focus on the language inclusion problem, a fundamental problem in computer
science [48] with diverse applications ranging from automata-based verification to compiler
construction [51, 34, 53, 81] and theorem proving [68]. Additionally, as a secondary result,
we establish a Myhill-Nerode theorem for certain subclasses of timed languages [4]. Here, a
language is a collection of words, where a word is simply a sequence of letters from a finite
set called an alphabet. For instance, 01001 is a word over the alphabet {0, 1} consisting of
the two letters 0 and 1. The kind of languages we are interested in are the formal languages.

1.1 Formal Languages
Formal languages are possibly infinite sets of words that admit a finite description i.e., a finite
set of rules that dictate how letters can be combined to form valid words. An example of
such finite descriptions are finite automata which represent regular languages. Two examples
of finite automata are given in Figure 1.1.

(E)
qI q

0 0, 1
(O) 1 0, 1

Figure 1.1: Automata E and O with alphabet Σ = {0, 1}.

A finite automaton has a finite number of states and transitions between these states. It
accepts or rejects words as follows. It starts in the initial state and reads letters from an
input word one at a time. Based on the current state and the letter it reads, the automaton
transitions to another state. The process continues until the entire input word is read. If,
after reading the entire input word, the automaton is in one of its designated accepting states,
it accepts the word as part of the regular language. If not, it rejects the word.

Example 1. The automaton E depicted in Figure 1.1 has two states: the initial state qI and
the state q which is accepting. It transitions from state qI to state q when it reads the letter 0.
At state q it can loop by reading either 0 or 1. It accepts the words 0 and 0101 but rejects

1

Kyveli Doveri

the word 1. The language accepted by this automaton consists of all the binary words that
represent even positive integers, with least significant digit first. Similarly, the automaton O
in Figure 1.1 accepts binary words corresponding to odd positive integers.

Another class of formal languages are the context free languages which extend the expressiveness
of finite automata by adding a stack for memory. Such automata are called pushdown automata.
Figure 1.2 illustrates one. Like a finite automaton, a pushdown automaton has a finite set of

qI q

0, pop A

0, pop A

1, push A

1, push A

Figure 1.2: Automaton equipped with a stack, with alphabet Σ = {0, 1} and stack alphabet
{A}.

states, including an initial state and one or more accepting states. Additionally, a pushdown
automaton has a stack alphabet, a finite set of symbols that can be pushed onto the stack. It
can perform three primary operations on the stack: It can push a symbol onto the top of
the stack. It can remove the symbol from the top of the stack. It can choose not to modify
the stack. When a pushdown automaton reads an input letter, its behavior depends on both
its current state and the symbol at the top of the stack. This combination dictates the next
state, the input letter to be consumed, and any stack operations.

Example 2. The pushdown automaton of Figure 1.2 has two states: the initial state qI and
the accepting state q. It starts at the initial state qI with an empty stack. It reads the letter 1,
pushes the symbol A onto the stack and remains in state qI . At this point, it has the option
to either loop by reading another 1 or transition to state q by reading 0 and popping A from
the stack. However, the transition to state q can only occur if the automaton has previously
read a letter 1 to ensure an A on top of the stack. Subsequently, from state q, it can return to
state qI by reading 1, pushing A onto the stack, and repeating the process. As a result, the
automaton accepts the word 1010. However, it does not accept the word 000.

The stack allows to recognize more complex languages. While it adds expressive power, it
also introduces challenges. For example, although the inclusion between regular languages is
a decidable problem, the inclusion problem between context-free languages is undecidable.
Notably, the inclusion of a context-free language into a regular language remains decidable.

1.2 The Language Inclusion Problem
The language inclusion problem asks whether a language contains all the words of another
language. Formally, given a language L and a language M , the problem asks whether every
word w ∈ L is also contained in M . It can be expressed as:

L ⊆? M

2

Chapter 1. INTRODUCTION

Solving the inclusion problem efficiently is crucial as it has various applications in computer
science. Questions like asking whether a system complies with a specification naturally reduce
to a language inclusion problem and so does proving a theorem of the form ∀x∃y, P (x)⇒
Q(y) [68] as illustrated by the following example.

Example 3. Consider the theorem "Every positive integer is either odd or even". The set of
positive integers is represented by the language {0, 1}∗ while the subsets of even integers and
odd integers are given by the languages L(E) and L(O) of the automata in Figure 1.1. Hence,
proving this theorem reduces to checking that the inclusion problem {0, 1}∗ ⊆ L(E) ∪ L(O)
holds.

We distinguish two general approaches to solve the language inclusion problem L ⊆? M : (i)
complement M , intersect with L and check for emptiness of the result; and (ii) reduce the
inclusion check to finitely many membership queries asking whether w ∈ M holds where
w ∈ L and each query aims at finding a counterexample to inclusion.

In this thesis we focus on the second approach. Previous works in that space leverage relations
between words to select a finite subset of words in L for which membership queries are
executed. Such relations are equivalence relations and more generally, quasiorders.

1.2.1 Quasiorders for the Inclusion

Quasiorders on words are binary relations that satisfy the properties of reflexivity and
transitivity, but not necessarily antisymmetry (as opposed to equivalence relations). They
are a versatile heuristic that has been applied to inclusion problems for languages such as
languages of finite words [2, 24, 31] (including visibly pushdown languages [15]) or languages
of infinite words [1, 3, 28, 29, 36, 64] and even tree languages [2, 13]. Quasiorders constitute
a class of relations that yields good results in practice. Algorithms leveraging quasiorders are
commonly referred to as antichains algorithms [24].

The key idea in using quasiorders is to discard words subsumed (for the quasiorder) by others,
so as to end up with a finite subset S of L. We then perform the membership queries w ∈M
for every w ∈ S. To provide a concrete example, consider a quasiorder that compares words
based on their length. A word u would be subsumed by a word v if the length of v is less
than or equal to the length of u. In this case, the resulting subset S would be the set of words
with the smallest lengths.

However, not every quasiorder is suitable. The quasiorder we use, in addition to being decidable,
needs to satisfy three requirements. Firstly, it must be a well-quasiorder, ensuring the selection
of S as a finite subset of minimal words. The second requirement is M -preservation which
intuitively says that a word inside M cannot subsume a word outside of M . This condition
ensures that a subset of minimal words will include a counterexample to inclusion if one exists,
so that L ⊆M holds iff S ⊆M holds. Furthermore, the quasiorder needs to satisfy certain
monotonicity conditions w.r.t. word concatenation, which are needed for the computation of
S. Notably, these conditions depend on the class of the language L. For example when L is
a regular language a quasiorder 6 on finite words should be right-monotonic, meaning that
u 6 v implies ua 6 va for all letters a and all finite words u and v. On the other hand, when

3

Kyveli Doveri

L is context-free, stronger monotonicity conditions are required. In this case, the quasiorder
should be both right-monotonic and left-monotonic.

Example 4 illustrates a suitable quasiorder to be used for the inclusion of a regular language
into the language of the automaton of Figure 1.3. Example 5 demonstrates the selection of a
subset S of {0, 1}∗ using this quasiorder.

Example 4. A M-preserving, right-monotonic, decidable well-quasiorder can be defined
from an automaton representing the language M . For instance, say that M is given by the
automaton of Figure 1.3. We define a quasiorder by comparing two words based on the states
reachable by the words from the initial state of the automaton. For instance, the word 1 reaches
states qI and p, while the word 01 can only reach the state qI . Since the set of reachable states
by 01 is a subset of the set of reachable states by 1, 1 is subsumed by 01. More generally, one
can show that every word in {0, 1}∗ ending with a 1 is subsumed by 01. Similarly, every word
ending with a 0 is subsumed by 0. As prescribed by the M -preservation, all the words ending
by 1 are rejected by the automaton, while those ending by 0 are accepted.

Example 5. Consider the inclusion problem {0, 1}∗ ⊆? M where M is given by the automaton
of Figure 1.3. A possible subset S of {0, 1}∗ selected with the quasiorder defined in Example 4
is the set {0, 01}. This is because any binary word is subsumed by either 0 or 01. By checking
membership in M on every word of S we find the counterexample 01 /∈M showing that the
inclusion {0, 1}∗ ⊆M does not hold.

qI q

p

0
0

1

11

Figure 1.3: Automaton with alphabet Σ = {0, 1}.

1.2.2 Starting Point: A Quasiorder-Based Framework
Our starting point is the framework by Ganty et al. [40] which tackles the inclusion problem
L ⊆? M for languages of words of finite length (finite words). The framework by Ganty et
al. handles different decidable cases including the inclusion between regular languages, the
inclusion of a context-free language into a regular language and even the inclusion between
one-counter net languages.

The algorithm by Ganty et al. uses the so-called antichain heuristics to solve the problem
L ⊆? M where L is regular or context-free and M is regular. It computes, through a fixpoint
computation, a finite subset of words of L. Subsequently, it executes the membership queries
w ∈M for each word w of this subset. At each step of the fixpoint computation the algorithm
discards words using a quasiorder: when two potential counterexamples are comparable

4

Chapter 1. INTRODUCTION

based on the quasiorder, the algorithm can safely discard the ’higher’ of the two without
compromising the completeness of the search.

As discussed in Section 1.2.1, the chosen quasiorder must satisfy specific conditions for the
algorithm to effectively decide the inclusion problem L ⊆? M . Specifically, it must (1) be
decidable; (2) be a well-quasiorder; (3) be M -preserving and (4) satisfy certain monotonicity
conditions depending on the class of the language L.

1.2.3 Extending the Framework
In this thesis we want to extend the framework by Ganty et al. to languages of infinite words,
often referred to as ω-languages, which consist of words of infinite length. Moreover, we want
to handle the inclusion between visibly pushdown languages [5]. More precisely, we focus on
the inclusion between two ω-regular languages, the inclusion of a ω-context free language into
a ω-regular language and the inclusion between two ω-visibly pushdown languages.

Regular languages of infinite words, or ω-regular languages, are recognized by Büchi automata.
A Büchi automaton is essentially a finite automaton, but with an altered acceptance condition.
This acceptance condition, known as the Büchi acceptance condition, is designed to accept or
reject infinite words as follows: If the automaton visits certain accepting states infinitely often,
then it accepts the infinite word; otherwise, it rejects it. Similarly, ω-context free languages
are accepted by Büchi pushdown automata.

Example 6. For example, the automaton in Figure 1.3, seen as a Büchi automaton accepts
the infinite word 0000 . . . consisting only of the letter 0 because it can read this word by staying
on the accepting state q forever. It does not accept the infinite word 0111 . . . because it visits
the accepting state only once (after reading the letter 0), thus finitely many times.

Visibly pushdown languages extend regular languages by incorporating a stack into the
automaton. However, unlike for context-free languages this stack is subject to specific
restrictions ensuring decidability properties like solving the inclusion problem for visibly
pushdown languages. These restrictions are imposed by partitioning the alphabet into
different classes where each class determines the stack operations allowed for letters belonging
to that class. To better understand this concept, let’s consider a partition of the alphabet
{0, 1} into two classes: one for the letter 0 and the other for the letter 1. We will specify
the stack operations for each class as follows: When processing a letter 0, a pop operation is
performed on the stack, while push operations are not allowed. Conversely, when processing
a letter 1, no pop operation is permitted, and in this case, a push operation must be executed
on the stack. This partition and its associated stack operations represent a simplified example
of how visibly pushdown languages operate under alphabet constraints. With this partition
of the alphabet, the pushdown automaton of Figure 1.2 falls into the category of visibly
pushdown automata (VPA).

Visibly pushdown languages [5] of infinite words are recognized by visibly pushdown automata
with a Büchi acceptance condition as illustrated by Example 7 bellow.

Example 7. The Büchi VPA of Figure 1.2 accepts the infinite word 1010.... It processes this
word by alternating between popping and pushing A while transitioning between states qI and

5

Kyveli Doveri

q. As a result, it passes infinitely often by the accepting state q.

Extending the framework by Ganty et al. [40] to ω-languages and to visibly pushdown
languages presents notable challenges.

Challenge 1. To tackle these inclusion problems, we need a quasiorder that can effectively
compare infinite words. Such a quasiorder is not readily available in the literature. This raises
the question of whether one exists at all.

Moreover, for a quasiorder to be suitable for deciding the inclusion problem, it must adhere
to conditions similar to the conditions (1)–(4) in the finite word case. The challenge posed
by the visibly pushdown languages is further complicated since, even in the context of finite
words, it is not immediately evident whether a suitable quasiorder exists. This brings us to
our second challenge.

Challenge 2. Is there a suitable quasiorder for visibly pushdown languages? Consider the
quasiorder described in Example 4, which compares words based on the reachable states in
the automaton. This quasiorder can be defined in the VPA case in a similar manner and is a
natural starting point in our quest for a quasiorder in the visibly pushdown case. It fulfills
the requirements (1)–(3) but it falls short when it comes to satisfying the right-monotonicity
condition. To see this, consider the words 110 and 10 and the VPA of Figure 1.2. Both
of these words lead the VPA to the same reachable state, q. Therefore, 110 subsumes 10.
However, there is a significant distinction in how the VPA processes these two words: With
the word 110, the VPA reaches state q with the symbol A on top of its stack, while it has
an empty stack with the word 10. As a result, after reading 110, the VPA can transition by
reading the letter 0. This transition is not possible with the word 10. Consequently, when
we concatenate the letter 0 to the right of these two words, the quasiorder fails to preserve
the order. Specifically, 1100 can reach state q, while 100 reaches no state. This suggests that
somehow the stack should be taken into account in the definition of our order. However,
this jeopardize its well-quasiorder property and raises the question of whether there exists a
quasiorder that satisfies all the requirements in the visibly pushdown case.

Perhaps we should question whether right-monotonicity is an appropriate monotonicity
condition to require in the visibly pushdown case.

Challenge 3. What form of monotonicity characterizes visibly pushdown languages? While
right-monotonicity characterizes regular languages (in essence, each transition in a finite
automaton corresponds to a right concatenation), this is not the case for visibly pushdown
languages. Recall the example involving the two words, 110 and 10, and the VPA in
Figure 1.2. As we discussed earlier the VPA handles these two words differently when it comes
to concatenating by a letter 0 on the right. This illustrates that the right-monotonicity, which
appropriately characterizes regular languages, does not hold the same for visibly pushdown
languages.

In summary, our main challenges so far involve finding decidable, M -preserving, monotonic,
well-quasiorders for language inclusion problems with infinite words. The specific monotonicity

6

Chapter 1. INTRODUCTION

properties required depend on the language class of L. While right-monotonicity is expected
for ω-regular languages, this isn’t the case for ω-visibly pushdown languages, which add an
extra layer of complexity to our task.

The next challenge apply similarly to all inclusion problems we address.

Challenge 4. The finite word case crucially relies on least fixpoint characterizations of
languages. Such characterizations are not readily available for languages of infinite words.
Therefore, we need to define a fixpoint characterization for ω-regular, ω-context free and
ω-visibly pushdown languages.

Challenge 5. Different quasiorders yield different algorithms. There are various quasiorders
that meet the conditions (1)–(4), offering flexibility within the framework [40]. For instance,
quasiorders can be derived from automata representations of M , as explained in Example 4,
and enhanced with simulation relations, as demonstrated in [40]. It is also possible to define
syntactic quasiorders whose definitions are independent of any automaton representation of
M . We want to investigate different quasiorders for the inclusion problems we are addressing
and assess their trade-offs.

1.3 A Myhill-Nerode Theorem for Timed Languages
A cornerstone in our understanding of regular languages is the Myhill-Nerode theorem. This
theorem characterizes regular languages in terms of the Nerode equivalence ∼L: for a word w
we write w−1L = {z | wz ∈ L} for the residual language of w w.r.t. L; and for two words u, v
we say u ∼L v if u−1L = v−1L.

Theorem 1 (Myhill-Nerode theorem). Let L be a language of finite words.

• L is regular iff the Nerode equivalence has a finite index.

• The Nerode equivalence is coarser than any right-monotonic L-preserving equivalence.

An equivalence over words being right-monotonic makes it possible to construct a natural
automaton with states being the equivalence classes. The Nerode equivalence being the
coarsest makes the associated automaton the minimal (and a canonical) deterministic machine
for the regular language. Our goal in this work is to obtain a similar characterization for
certain subclasses of timed languages.

Timed languages and timed automata were introduced by Alur and Dill [4] as a model for
systems with real-time constraints between actions. Ever since its inception, the model
has been extensively studied for its theoretical aspects [76, 11, 58, 75, 14, 8] and practical
applications [16, 49]. In this setting, words are decorated with a delay between consecutive
letters. A timed word is a finite sequence (t1 · a1)(t2 · a2) . . . (tn · an) where each ti ∈ R≥0
and each ai is a letter taken from a finite alphabet Σ. A timed word associates a time delay
between letters: a1 was seen after a delay of t1 from the start, the next letter a2 appears
t2 time units after a1, and so on. Naturally, a timed language is a set of timed words. A
timed automaton is an automaton model that recognizes timed languages. Figures 1.4 and

7

Kyveli Doveri

qIstart q
a, x = 1, 1

a, x = 1, 1a, x < 1, 1

Figure 1.4: Timed Automaton accepting L1 = {(t1 · a) . . . (tn · a) | t1 + · · · + tn = 1} with
alphabet Σ = {a}.

1.5 present some examples. In essence, a timed automaton makes use of clocks to constrain
time between the occurrence of transitions. In Figure 1.4, the variable x denotes a clock.
The transition labels are given by triples comprising a letter (e.g. a), a clock constraint (e.g.
x = 1), and a multiplicative factor (0 or 1) for the clock update. Intuitively, the semantics of
the transition from qI to q is as follows: the automaton reads the letter a when the value of
the clock held in x is exactly 1 and updates the clock value to 1 × x. Imagining the third
element of transition label is 0 then the transition updates the value of x to 0× x = 0. The
second element of the transition label is often referred to as the transition guard whereas
the third element is the reset. It is worth mentioning that guards feature constants given by
integer values meaning that a guard like x = 0.33 is not allowed.

It is challenging to attempt a Nerode-style equivalence for timed languages.

Challenge 1. The Nerode equivalence lifted as it is has infinitely many classes. For
example, the timed automaton of Figure 1.4 accepts a timed word (t1 · a) . . . (tn · a) as long as
t1 + · · ·+ tn = 1. The timed language L1 of that automaton has infinitely many quotients.
Indeed let 0 < t1 < 1, we have that (t1 · a)−1L1 = {(t2 · a) . . . (tn · a) | t2 + · · ·+ tn = 1− t1}.
It is easy to see that different values for t1 yield different quotients, hence L1 has uncountably
many quotients.

Challenge 2. Two words with the same residual languages may never go to the same control
state in any timed automaton. Figure 1.5 gives an example of a timed language that exhibits
this challenge. Consider the words u = (0.5 · a) and v = (1.5 · a). The residual of both these
words is the singleton language {(0.5 · b)}. Suppose both u and v go to the same control
state q in the timed automaton. After reading u (resp. v), clocks which are possibly reset
will be 0, whereas the others will be 0.5 (resp. 1.5). Suppose v is accepted via a transition
sequence qI −→ q −→ qF . Since guards contain only integer constants, the guard on q −→ qF
should necessarily be of the form x = 2 for some clock x which reaches q with value 1.5. The
same transition can then be taken from u to give u(2 · b) or u(1.5 · b) depending on the value
of x after reading u. A contradiction. This challenge simply means that we cannot hope to
identify states of a timed automaton through quotients of a Nerode-type equivalence. The
equivalence that we are aiming for needs to be stronger, and further divide words based on
some past history.

Challenge 3. The Nerode-style equivalence should be amenable to a timed automaton
construction. In the case of languages of untimed words, monotonicity of the Nerode equiv-

8

Chapter 1. INTRODUCTION

q0start
q1

q2

q3

a, 0 < x < 1, 1

a, 1 < x < 2, 1

b, x = 1, 0

b, x = 2, 0

Figure 1.5: Automaton accepting L2 = {(t1 · a)(t2 · b) | either 0 < t1 < 1 and t1 + t2 =
1, or 1 < t1 < 2 and t1 + t2 = 2} with alphabet Σ = {a, b}

alence immediately led to an automaton construction. We need to find the right notion of
monotonicity for the class of automata that we want to build from the equivalence.

1.4 Thesis Contributions
Next, we outline our contributions in the same order as they are presented in this thesis.

1.4.1 Inclusion for Infinite Words
We define antichain algorithms for the inclusion problem L ⊆? M where L and M are two
regular languages of infinite words [29], a PSPACE-complete problem [54]. To do so, we
build upon the quasiorder-based approach. We further demonstrate the generality of our
algorithmic framework by instantiating it to the inclusion problem of ω-context free languages
into ω-regular languages, which is known to be EXPTIME-complete [50, 63].

To overcome the first challenge outlined in Section 1.2, we reduce the inclusion problem
between ω-regular languages into an equivalent inclusion problem between their ultimately
periodic words. These are infinite words of the form uvω ∈ L, where u is a prefix and v a period
of uvω respectively. Once this reduction is accomplished, we compare two ultimately periodic
words using a pair of quasiorders on finite words, denoted as 6,4. The first quasiorder, 6,
compares the prefixes of ultimately periodic words, while the second quasiorder, 4, compares
their periods. In other words, we compare the decompositions (u, v) of ultimately periodic
words uvω using the ordering 6×4 to filter out a finite number of them.

As expected, for the inclusion between ω-regular languages both quasiorders 6 and 4 need
to be right-monotonic. Furthermore, it turns out that a Büchi automaton enables a fixpoint
characterization of the set of ultimately periodic words it accepts. Hence, by adapting certain
quasiorders from the literature we are able to obtain a suitable pair of quasiorders for the
inclusion between ω-regular languages. Consequently, we are able to compute a finite subset
of ultimately periodic words, which is sufficient for solving the inclusion problem.

We propose different pairs of quasiorders to be used in our framework and discuss how they
compare. Of particular interest are the state-based pairs of quasiorders derived from a Büchi
automaton because they allow to formulate an inclusion algorithm that exclusively operates
on automata states. We call such an algorithm a state-based algorithm. We also define a
syntactic pair whose definition is based solely on M . This syntactic pair of orders is “ideal”
in the sense it is the coarsest one suitable to apply in our framework. Hence, it selects the

9

Kyveli Doveri

“smallest” subset of L. However, the quasiorders of the syntactic pair are as hard to decide as
the language inclusion problem itself.

We implemented our state-based algorithm in a tool called BAIT (Büchi Automata Inclusion
Tester) [9]. We conducted an experimental comparison of BAIT against some state-of-the-art
language inclusion tools. We also compare with the FORQ-based approach [28] of the next
contribution.

1.4.2 Improved Inclusion with Families of Quasiorders
Our second contribution is also an antichain algorithm for the inclusion problem between
regular languages of infinite words. The novelty here is that instead of two quasiorders (as in
the previous contribution), we use an unbounded number of quasiorders: one for the prefixes
and a family of quasiorders for the periods each of them depending on a distinct prefix.
Our motivation for doing so is to obtain more efficient algorithms. Resorting to a family of
quasiorders, instead of just a pair, allows more pruning when searching for a counterexample,
thus lesser membership queries at the end.

We formalize the notion of family of right quasiorders by relaxing and generalizing the notion of
family of right congruences introduced by Maler and Staiger [61]. Using families of quasiorders
leads to significant algorithmic differences compared to the two quasiorders approach [29].
More precisely, the algorithm with two quasiorders computes exactly two fixpoints (one for
the prefixes and one for the periods) independently whereas the algorithm using a family of
quasiorders computes two fixpoints for the prefixes and unboundedly many fixpoints for the
periods (depending on the number of prefixes that belong to the first two fixpoints). Even
though we lose the prefix/period independence and we compute more fixpoints, in practice,
the use of families of quasiorders scales up better than the approach based on two quasiorders.

We define the FORQ of a Büchi automaton and study the algorithmic complexity of our
algorithm instantiated with this specific FORQ.

Finally, we implemented our FORQ-based algorithm in a tool called FORKLIFT [28]. We
conducted an experimental evaluation of both FORKLIFT and BAIT, comparing them
with state-of-the-art language inclusion checking tools, including SPOT [33, 32], GOAL [77],
RABIT [71, 18] and ROLL [56]. We conducted our experimental evaluation on an extensive
benchmark suite. This suite covers verification tasks as defined by the RABIT tool [1, 3],
logical implication tasks in word combinatorics as defined by the Pecan theorem prover [67],
and termination tasks as defined by Ultimate Automizer [44, 43].

1.4.3 Inclusion for Visibly Pushdown Languages
We introduce antichain algorithms for the inclusion problem L ⊆? M between visibly pushdown
languages of infinite words [26], an EXPTIME-complete problem.

In this context as well, the selection of words from L is limited to the ultimately periodic
words. We define a specific type of decompositions of ultimately periodic words called
legitimate decompositions. By reducing the problem to these legitimate decompositions, we
ensure that we only compare words that a VPA handles in a similar manner. We also define

10

Chapter 1. INTRODUCTION

monotonicity conditions w.r.t. word concatenations that are characteristic to visibly pushdown
languages. We establish a fixpoint characterization for a subset of legitimate decompositions of
L. Hence, we are able to define an antichain algorithm which leverages a subset of legitimate
decompositions, and is parameterized by a pair of quasiorders.

We put forward different quasiorders to be used in our algorithm: state-based quasiorders
derived from a visibly pushdown automaton underlyingM and, also syntactic quasiorders. We
further prove that when instantiated with the state-based quasiorders the resulting state-based
algorithm, has a runtime that matches the corresponding problem complexity.

Finally, we implemented the state-based algorithm and evaluated it on various benchmarks
collected from Friedmann et al. [38] and from SV-COMP1, the Software Verification com-
petition. Our empirical evaluation was carried out against Ultimate [44] which follows a
complement, intersect and check for emptiness approach. The preliminary conclusion of the
empirical results is in favor of our approach as it scales up better.

1.4.4 A Myhill-Nerode Theorem for Timed Automata with Integer
Resets

In this work, we look at languages recognized by timed automata with integer resets (IRTA) [76].
These are automata where clock resets are restricted to transitions that contain a guard of
the form x = c for some clock x and some integer c. It is known that IRTA can be reduced to
1-clock-deterministic IRTA [62].

We define a notion of monotonicity for an equivalence on timed words. This monotonicity
is parametrised by a constant K, and is called K-monotonicity. Given an IRTA language
L we define a Nerode-style equivalence ≈L,K that has a finite number of classes and is K-
monotonic. This equivalence leads to the following Myhill-Nerode style characterization for
IRTA languages.

Theorem 2. Let L be a timed language.

• L is accepted by a timed automaton with integer resets iff there exists a constant K such
that ≈L,K is K-monotonic and has a finite index.

• The ≈L,K equivalence is coarser than any K-monotonic L-preserving equivalence.

This characterization leads to the construction of a canonical 1-clock-deterministic IRTA with
maximum constant K.

Finally, we also present a similar characterization for the class of languages obtained by timed
automata with no resets.

1https://sv-comp.sosy-lab.org

11

https://sv-comp.sosy-lab.org

Chapter 2

RELATED WORKS

In this section, we present existing work related to this thesis.

Inclusion for Regular Languages. Significant effort has been devoted to the discovery of
algorithms for inclusion that behave well in practice [3, 18, 30, 36, 52, 55]. Each proposed
algorithm is characterized by a set of techniques (e.g. Ramsey-based, rank-based) and
heuristics (e.g. antichains, simulation relations). The algorithm we propose falls into the
category of Ramsey-based algorithms and uses the antichain [24] heuristics.

In the work of Abdulla et al. [1, 3] which was further refined by Clemente et al. [18] they use
a single quasiorder to compare both prefixes and periods. Their effort has been focused on
refining that single quasiorder by enhancing it with simulation relations.

Kuperberg et al. [52] also reduce the language equivalence problem over Büchi automata to
that of their ultimately periodic subsets. A further commonality is that the algorithm of [52]
handles prefixes and periods differently: for the prefixes they leverage a state-of-the-art up-to
congruence algorithm [12], while up-to congruences are not used for the periods1. Fogarty
and Vardi [36] for the universality problem, and later Abdulla et al. [1, 3] for the inclusion
problem between languages accepted by Büchi automata, all reduce their decision problems
to the ultimately periodic subsets. Their approach is based on a partition of nonempty
words whose blocks are represented and manipulated through so-called supergraphs. The
equivalence relation underlying their partition can be obtained from one of our quasiorders.
Moreover, by equipping their supergraphs with a subsumption order [3, Def. 6], they define a
relation which coincides with one of our quasiorders. Hofmann and Chen [47], whose approach
based on abstract interpretation inspired our work, also tackle the inclusion problem for
ω-languages. They construct an abstract (finite) lattice using the same equivalence relation
which is derived from a given Büchi atomaton, and define a Galois connection between it and
the (infinite) lattice of languages of infinite words. However, they do not relax this relation
into a quasiorder.

Finally, the complementation-based approaches reduce language inclusion to a language
1In the technical report thereof, the authors work out up-to union and up-to equivalence reasoning for

periods but not their combination (up-to congruence).

13

Kyveli Doveri

emptiness check by using intersection and an explicit complementation of a Büchi automaton.
Despite that there are Büchi automata of size n whose complement cannot be represented
with less than n! states [65], algorithms to complement Büchi automata have been defined,
implemented and are effective in practice [78]. In our approach, explicit complementation is
avoided altogether.

Families of Quasiorders. The notion of family of right quasiorders was inspired by the
notion of family of right congruences (FORC) introduced by Maler and Staiger [61] to advance
the theory of recognizability of ω-regular languages and, in particular, questions related to
minimal-state automata. Recently, families of right congruences have been used in other
contexts like the learning of ω-regular languages (see [7] and references therein) and Büchi
automata complementation [57].

Inclusion for Visibly Pushdown Languages. Bruyere et al. [15] proposed an antichain
algorithm for the inclusion of VPL but they only tackle the problem for languages of finite
words. The same limitation applies to Ganty et al. [40] where, moreover, they do not tackle
the inclusion problem of VPL into VPL (the closest they tackle is CFL into regular). The
extension from the finite to the infinite case was tackled in Doveri et al. [29] but they do
not cover the case ω-VPL into ω-VPL (the closest they tackle is ω-CFL into ω-regular).
Friedmann et al. [37, 38] do tackle the ω-VPL into ω-VPL problem. However they do not
leverage the full power of quasiorders (they use equivalence instead); they do not use distinct
pruning techniques for prefix and periods; and they do not put forward syntactic quasiorders.
In the work by Henzinger et al. [45] the authors define antichains algorithms for solving the
inclusion problem between operator-precedence languages [35]. These languages, which also
enjoy an EXPTime-complete inclusion problem, fall within a class that is strictly contained
in deterministic context-free languages and, in turn, strictly contains VPL [22].

Canonical Form for Timed Languages. A machine independent characterization for
deterministic timed languages has been studied by Bojańczyk and Lasota [11]. The challenges
presented in Section 1.3 are circumvented by considering a new automaton model timed
register automata that generalizes timed automata. This automaton model makes use of
registers to store useful information, for instance for the language in Figure 1.5, a register
stores the value 0.5 after reading (0.5 ·a) and (1.5 ·a). This feature helps in resolving Challenge
2. For the question of finiteness mentioned in Challenge 1, timed register automata are further
viewed as a restriction of a more general model of automata that uses the abstract concept of
Frankel-Mostowski sets in its definition. Finiteness is relaxed to a notion of orbit-finiteness.

The work of An et al. [6] takes another approach to these challenges by considering a subclass
of timed languages which are called real-time languages. These are languages that can be
recognized using timed automata with a single clock that is reset in every transition. Therefore,
after reading a letter, the value of the clock is always 0. This helps in solving the challenges,
resulting in a canonical form for real-time languages.

The work [58] also focus on a machine independent characterization for deterministic timed
languages, whereas the works [42], [6], [80] extend the study of the canonical forms to an

14

Chapter 2. RELATED WORKS

active learning algorithm.

Our work is in the same spirit as [11], but for a subclass of deterministic timed languages.
Languages accepted by event-recording automata are a class of languages where the value
of the clocks is determined by the input word. This helps in coming up with a canonical
form [42]. In [80], the author presents a Myhill-Nerode style characterization for deterministic
timed languages by making use symbolic words, rather than timed words directly. The author
shows that the equivalence has finite index iff the language is recognizable (under the notion
of recognizability using right-morphisms from timed words to a bounded subset of itself, given
by Maler and Pnueli [58]). Further, Maler and Pnueli have given an algorithm to convert
recognizable timed languages to deterministic timed automata which resets a fresh clock in
every transition and makes use of clock-copy updates x := y in the transitions. It is known
that automata with such updates can be translated to classical timed automata [75, 14].

We have considered a subclass of deterministic timed languages. Therefore, our class does
fall under the purview of the [80, 58] work — however, the fundamental difference is that we
continue to work with timed words, and not symbolic timed words. This gives an alternate
perspective and a direct and simpler 1-clock IRTA construction.

15

Chapter 3

PRELIMINARIES

In this section, we introduce the concepts and notations that will be used throughout the
remainder of the thesis.

3.1 Words and Languages
An alphabet is a nonempty finite set of symbols, generally denoted by Σ. A word is a finite
sequence a1 · · · an of letters ai ∈ Σ. The set of finite words and the set of infinite words
over Σ are denoted by Σ∗ and Σω respectively. We denote by ε the empty word and define
Σ+ , Σ∗\{ε}. An ultimately periodic word is an infinite word ξ ∈ Σω such that ξ = uvω for
some finite prefix u ∈ Σ∗ and some finite period v ∈ Σ+. We call such a couple (u, v) ∈ Σ∗×Σ+

a decomposition of ξ. For a word u ∈ Σ∗ ∪ Σω we denote by |u| ∈ N ∪ {ω} its length and for
i ∈ {1, . . . , |u|} we write u[i] for the i-th letter of u. A language of finite words over Σ is a
subset of Σ∗. A language of infinite words or ω-language over Σ is a subset of Σω.

A timestamp is a finite sequence of non-negative real numbers. We denote the latter set by
R≥0 and the set of all timestamps by T. A timed word is a finite sequence (t1 · a1) · · · (tn · an)
where a1 · · · an ∈ Σ∗ and t1 · · · tn ∈ T. We denote the set of timed words by TΣ∗. Given
a timed word u = (t1 · a1) . . . (tn · an) ∈ TΣ∗ we denote by σ(u) the sum t1 + · · · + tn of
its timestamps. A timed language is a set of timed words. As usual, we denote the empty
(un)timed word by ε. The residual language of an (un)timed language L with regard to
a (un)timed word u is defined as u−1L = {w | uw ∈ L}. Therefore it is easy to see that
ε−1L = L for every (un)timed language L. Also we have that σ(ε) = 0.

3.2 Well-Quasiorders, Kleene Iterates and Monotonic-
ity

Well-Quasiorders. A quasiorder on a set E, is a binary relation n ⊆ E × E that is
reflexive (xn x) and transitive (xn y ∧ y n z =⇒ xn z). A quasiorder n is a partial order
when n is antisymetric (xn y ∧ y n x =⇒ x = y). Given two subsets X, Y ⊆ E the set Y is

17

Kyveli Doveri

said to be a basis for X w.r.t. n whenever Y ⊆ X and ∀x ∈ X, ∃y ∈ Y, y n x. A basis Y for
X is said to be a finite basis if it is a finite set. A quasiorder is a well-quasiorder if every
subset of E admits a finite basis. An antichain is a subset of E such that any two distinct
elements in the subset are incomparable.

Equivalence Relation. A binary relation ∼ ⊆ S × S on a set S is an equivalence if it is
reflexive (i.e. x ∼ x), transitive (i.e. x ∼ y ∧ y ∼ z =⇒ x ∼ z) and symmetric (i.e. x ∼
y =⇒ y ∼ x). The equivalence class of s ∈ S w.r.t. ∼ is the subset [s]∼ = {s′ ∈ S | s ∼ s′}.
A representative of the class [s]∼ is any element s′ ∈ [s]∼. Given a subset D of S we define
[D]∼ = {[d]∼ | d ∈ D}. We say that ∼ has finite index when [S]∼ is a finite set.

Kleene Iterates. A complete lattice is a partially ordered set (E,n) in which every subset
has a least upper bound (the supremum) in E. A sequence {sn}n∈N ∈ EN on quasiordered
set (E,n) is increasing if for every n ∈ N we have sn n sn+1. For a function f : E → E on
a quasiordered set (E,n) and for all n ∈ N, we define the n-th iterate fn : E → E of f
inductively as follows: f 0 , λx.x; fn+1 , f ◦fn. The denumerable sequence of Kleene iterates
of f starting from the bottom value ⊥ ∈ E is given by {fn(⊥)}n∈N. Recall that when (E,n)
is a complete lattice and f : E → E is an increasing function (i.e. dn d′ =⇒ f(d) n f(d′))
then by the Knaster–Tarski theorem, f has a least fixpoint lfp f given by the supremum of
the increasing sequence of Kleene iterates of f i.e., lfp f = ⋃

n∈N f
n(⊥).

Monotonicity. A quasiorder n ⊆ Σ∗ × Σ∗ is said to be right-monotonic when ∀u, v ∈
Σ∗, ∀a ∈ Σ, un v ⇒ ua n va. We define symmetrically a quasiorder to be left-monotonic
when it is preserved by left concatenations. We say that a quasiorder is monotonic if it is
both left and right-monotonic.

3.3 Finite Automata
A Finite Automaton (FA for short) defined over an alphabet Σ is a tuple A = (Q, qI , δ, F),
where:

• Q is a finite set of states, including a unique initial state qI ∈ Q.

• δ ⊆ Q× Σ×Q is a finite set of transitions.

• F ⊆ Q is a subset of final states.

We denote transitions as q a→ q′ when (q, a, q′) ∈ δ and extend this relation to finite words
using transitive and reflexive closure, writing q u−→∗q′ for u ∈ Σ∗. Furthermore, we use q u−→~q′
to indicate the existence of qf ∈ F and u1, u2 ∈ Σ∗ such that q u1−→∗qf , qf u2−→∗q′, and u = u1u2.

A run of A on a word u = a0a1 · · · ∈ Σ∗ ∪ Σω is a sequence:

e = q0
a0→ q1

a1→ q2 · · · .

When u is a finite word, e is a finite sequence q u−→∗q′. When u is an infinite word, e is an
infinite sequence. In this case, e is called an accepting run when q0 = qI and qj ∈ F for
infinitely many j’s.

18

Chapter 3. PRELIMINARIES

The language of finite words accepted by A is defined as:

L∗(A) , ⋃q∈F{u ∈ Σ∗ | qI u−→∗q}.

A language L ⊆ Σ∗ is regular if L = L∗(A) for some FA A.

We refer to A as a Büchi Automaton (BA) when considering it as an acceptor of infinite
words. The ω-language accepted by A is defined as:

Lω(A) , {ξ ∈ Σω | there is an accepting run of A on ξ}.

A language L ⊆ Σω is ω-regular if L = Lω(A) for some BA A.

We provide two examples of automata in Figure 3.1:

1. FA C accepts every finite word over the alphabet {a, b} and, when viewed as a BA, it
accepts every infinite word over the same alphabet.

2. A finite word is accepted by D if and only if it ends with an a. An infinite word is
accepted by D if and only if it contains infinitely many a’s.

(C)
i a b

(D)

q0 q

a

a

b

b

Figure 3.1: Automata C and D with alphabet Σ = {a, b}.

3.4 Pushdown Automata
A Pushdown Automaton (PDA) over Σ is defined by the tuple P = (Q, qI ,Γ, δ, F), where:

• Q is a finite set of states, including an initial state qI ∈ Q.

• Γ is the stack alphabet, including an initial stack symbol ⊥.

• δ is a finite set of transitions, δ ⊆ Q× (Σ ∪ {ε})× Γ×Q× Γ∗.

• F ⊆ Q is a subset of final states.

Configurations of the PDA P are pairs in Q× Γ∗. For each a ∈ Σ, the transition relation `a
between configurations is defined by (q, γw) `a (p, βw), for some w ∈ Γ∗, when (q, a, γ, p, β) ∈
δ. This relation is extended to words using reflexivity and transitivity. Specifically, for all
u ∈ Σ∗, (q, w)`∗u (p, w′) when the configurations (q, w) and (p, w′) are related by a sequence
of transitions such that the concatenation of their labels forms the word u. We denote
(q, w) `~u (p, w′) when such a sequence includes a configuration with a final state. The
language of finite words accepted by a PDA P is defined as:

L∗(P) ,
⋃
q∈F
{u ∈ Σ∗ | (qI ,⊥)`∗u (q, w), w ∈ Γ∗}.

19

Kyveli Doveri

A language L ⊆ Σ∗ is context-free if L = L∗(P) for some PDA P on Σ.

A run of P on an infinite word ξ = a0a1 · · · ∈ Σω is an infinite sequence:

(q0, w0)`a0 (q1, w1)`a1 · · · .

It is an accepting run when (q0, w0) = (qI ,⊥) and qj ∈ F for infinitely many j’s.

We refer to P as a Büchi Pushdown Automaton (BPDA) when considering it as an acceptor
of infinite words. The ω-language accepted by P is defined as:

Lω(P) , {ξ ∈ Σω | there is an accepting run of P for ξ}.

A language L ⊆ Σω is ω-context-free if L = Lω(P) for some BPDA P on Σ.

3.5 Context-free Grammar
Context-free languages can also be generated by grammars. A Context-Free Grammar (CFG)
on Σ is a tuple G = (V, P) where V = {X1, · · · , Xn} is the set of variables including the start
variable X1, and P is the set of productions Xi → β where β ∈ (V ∪ Σ)∗. We assume, for
simplicity and without loss of generality, that grammars are always given in Chomsky Normal
Form, that is, every rule Xj → β ∈ P is such that β ∈ (V × V) ∪ Σ ∪ {ε} and if β = ε then
i = 1. We also assume that for all Xj ∈ V there exists a rule Xj → β ∈ P , otherwise Xj

can be safely removed from V . Given two strings w,w′ ∈ (V ∪ Σ)∗ we write w ⇒ w′ if there
exist two strings u, v ∈ (V ∪ Σ)∗ and a grammar rule X ⇒ β ∈ P such that w = uXv and
w′ = uβv. We denote by ⇒∗ the reflexive-transitive closure of ⇒. The language generated by
G is L∗(G) , {w ∈ Σ∗ | X1 ⇒∗ w}.

3.6 Visibly Pushdown Automata
Let Σ = Σi ∪ Σc ∪ Σr be an alphabet comprising three disjoint alphabets. Given a word
u = u0u1 · · · ∈ Σ∗ ∪ Σω, we define a position j (where j ∈ N and j < |u|) to be an internal
position if uj ∈ Σi, a call position if uj ∈ Σc, and a return position if uj ∈ Σr.

A Visibly Pushdown Automaton (VPA) over Σ is described by the tuple A = (Q, qI ,Γ, δ, F). It
is akin to a PDA, with the distinction being in the transition relation, defined as: δ = δi∪δc∪δr,
comprising three transition relations:

• δi ⊆ Q× Σi ×Q

• δc ⊆ Q× Σc ×Q× Γ\{⊥}

• δr ⊆ Q× Σr × Γ×Q

For a ∈ Σ, the relation `a between configurations is defined as follows:

• If a ∈ Σi and w ∈ Γ∗, (p, w) `a (q, w) if (p, a, q) ∈ δi.

• If a ∈ Σc and w ∈ Γ∗, (p, w) `a (q, wγ) if (p, a, q, γ) ∈ δc.

20

Chapter 3. PRELIMINARIES

• If a ∈ Σr, γ ∈ Γ\{⊥}, and w ∈ Γ∗, (p, wγ) `a (q, w) if (p, a, γ, q) ∈ δr.

• If a ∈ Σr, (p,⊥) `a (q,⊥) if (p, a,⊥, q) ∈ δr.

We lift the relation ` to words by transitivity and reflexivity. Similar to the BPDA, we define
the criteria for accepting runs and the ω-language of a VPA. A language L ⊆ Σω is ω-VPL if
L = Lω(A) for some VPA A.

Two examples of VPA are provided in Figure 3.2, where A has an accepting run on c cr cr cr . . .
and so does B on crr crr

(A) qI c/A r/A

(B)

p q

c/A

c/A r/A

r/⊥

Figure 3.2: Two ω-VPA with Γ = {A,⊥}, Σi = ∅, Σc = {c} and Σr = {r}.

Matching Relation. The partition of the alphabet Σ = Σi ∪ Σc ∪ Σr induces a unique
matching relation between a word’s call and return positions (see [38]).

For any u ∈ Σ∗∪Σω, we define the matching relation of u, denoted yu, as the unique relation
on its call and return positions such that for every j yu k we have 0 ≤ j < k < |u|, uj ∈ Σc,
uk ∈ Σr, |{n | j yu n}| ≤ 1, |{n | n yu k}| ≤ 1 and there are no j′, k′ with j′ yu k

′ and
j < j′ < k < k′.

When j yu k, we refer to j and k as matched positions. A call (resp. return) position j in u
is unmatched if there exists no k such that j yu k (resp. k yu j). Furthermore, for every
unmatched position n in u there is no j yu k such that j < n < k, and if un ∈ Σc (resp.
un ∈ Σr), then there is no unmatched return (resp. call) position k with n < k (resp. k < n).
A word is said to be well-matched if it has no unmatched position.

Definition 3.6.1. We define the subsets of words W, C, R, and Uc as the least solution to the
following system of equations:

W = Σi ∪ {ε} ∪ ΣcW Σr ∪W W

R = Σc ∪W ∪RR
C = Σr ∪W ∪ C C
Uc = Σc ∪ C UcR

The subset W is the set of well-matched finite words, C (resp. R) is the set of finite words
where all call (resp. return) positions are matched and Uc is the set of finite words with at
least one unmatched call position.

21

Kyveli Doveri

3.7 Timed Automata
Timed automata are recognizers of timed languages introduced in the seminal work [4]. Since
we focus on subclasses of timed automata with a single clock, we will not present the definition
of general timed automata. Instead, we give a modified presentation of one clock timed
automata that will be convenient for our work.

One Clock Timed Automata. A One-clock Timed Automaton (1-TA) over Σ is a tuple
A = (Q, qI , T, F) where Q is a finite set of states, qI ∈ Q is the initial state, F ⊆ Q is the set
of final states and T ⊆ Q×Q×Σ×Φ× {0, 1} is a finite set of transitions where Φ is the set
of clock constraints given by

φ ::= x < m | m < x | x = m | φ ∧ φ , where m ∈ N.

For a clock constraint φ, we write JφK for the set of values of x that satisfies the constraint.
Notice that we have disallowed guards of the form x ≤ m which appear in standard timed
automata literature, since its effect can be captured using two transitions, one with x = m
and another with x < m. In our syntax, a transition looks like (q, q′, a, φ, r) where φ is a clock
constraint called the guard of the transition and r ∈ {0, 1} denotes whether the single clock x
is reset in the transition: 0 denotes that it is reset, whereas 1 denotes otherwise.

We say that a 1-TA with transitions T is deterministic whenever for every pair θ = (q, q′, a, φ, r)
and θ1 = (q1, q

′
1, a1, φ1, r1) of transitions in T such that θ 6= θ1 we have that either q 6= q1,

a 6= a1 or JφK ∩ Jφ1K = ∅.

A run of A on a timed word (t1 · a1) . . . (tk · ak) ∈ TΣ∗ is a finite sequence

e = (q0, ν0) t1,θ1−−→ (q1, ν1) t2,θ2−−→ · · · tk,θk−−→ (qk, νk) ,

where qj ∈ Q, νj ∈ R≥0 for all j ∈ {0, . . . , k} and, moreover for each i ∈ {1, . . . , k} the
following hold:

• θi ∈ T and θi is of the form (qi−1, qi, ai, φi, ri),

• νi−1 + ti ∈ JφiK, and

• νi = ri(νi−1 + ti).

Therefore if ri = 0, we have νi = 0 and if ri = 1 we have νi = νi−1 + ti. A pair (q, ν) ∈ Q×R≥0
like the ones occurring in the run e is called a configuration of A and the configuration (qI , 0)
is called initial. The run e is deemed accepting if qk ∈ F .

For w ∈ TΣ∗ we write (q, ν) w (q′, ν ′) if there is a run of A on w from (q, ν) to (q′, ν ′).
Observe that if A is deterministic then for every timed word w there is at most one run
on w starting from the initial configuration. Finally, given a configuration (q, x) define
L(q, x) = {w ∈ TΣ∗ | (q, x) w (q, ν), q ∈ F, ν ∈ R≥0}, hence define L(A) as L(qI , 0).

An important technical tool in the analysis of timed automata is the region equivalence [4].
We recall this equivalence in the setting of one-clock timed automata.

22

Chapter 3. PRELIMINARIES

Region Equivalence. Given a constant K ∈ N define the equivalence ≡K ⊆ R≥0 × R≥0 by

x ≡K y ⇐⇒
(
bxc = byc ∧ (frac(x) = 0⇔ frac(y) = 0)

)
∨ (x, y > K) ,

where given x ∈ R≥0 we denote by bxc its integral part and by frac(x) its fractional part.

23

Chapter 4

INCLUSION CHECKING OF
LANGUAGES OF FINITE WORDS

In this chapter, we present the quasiorder-based framework by Ganty et al. [39, 40, 79] designed
to address the language inclusion problem between regular languages of finite words. The
original presentation of this framework was rooted in the context of abstract interpretation [20,
21]. Here, to simplify the exposition, we have removed any reliance on abstract interpretation.

4.1 Overview
We consider the inclusion problem L∗(A) ⊆ M where A = (Q, qI , δ, F) is a FA and M is a
regular language. We derive an algorithm for solving this problem in three steps:

1. Reduction to a Finite Basis: we employ a well-quasiorder on finite words to derive
from L∗(A) a finite basis, denoted as Sfinite. The key objective here is to establish
the following equivalence, which reduces the inclusion problem to a finite number of
membership queries in the language M :

L∗(A) ⊆M ⇐⇒ ∀u ∈ Sfinite, u ∈M . (†)

2. Fixpoint Characterization: we give a fixpoint characterization for L∗(A) to iteratively
produce the words of L∗(A).

3. Basis Detection: we define a check to identify bases for L∗(A) among the Kleene
iterates of the fixpoint established in Step 2. Once we have successfully identified a
basis, we can designate it as the set Sfinite mentioned in Step 1.

Notice that a subset Sfinite such that (†) holds always exists: if the inclusion holds take
Sfinite to be any finite subset of L∗(A) (empty set included); else take Sfinite to contain some
counterexample to inclusion.

Expectedly, the well-quasiorder we use in Step 1 needs to satisfy certain properties for Sfinite
to be computable and for (†) to hold (in particular the left to right implication).

25

Kyveli Doveri

Definition 4.1.1. Given a regular language M ⊆ Σ∗ we say that a quasiorder 6 on Σ∗ is
M -preserving when for every u, v ∈ Σ∗ if u ∈ M and u 6 v then v ∈ M . We say that 6 is
M -suitable if it is a M -preserving, right-monotonic and decidable well-quasiorder.

Intuitively, the “well”-property on the quasiorder ensures the finiteness of the basis. The
preservation property ensures completeness: if the inclusion L∗(A) ⊆M does not hold then a
basis of L∗(A) contains a counterexample to inclusion because a counterexample can only
be discarded (that is, not included in Sfinite) if it is subsumed by another counterexample in
Sfinite. Finally, the property of right-monotonicity is needed to compute Sfinite as a terminating
fixpoint computation.

4.2 An Algorithmic Framework for Checking Inclusion
In the following we detail the three steps of the framework.

4.2.1 Reduction to a Finite Basis
We fix a M -preserving well-quasiorder 6 on Σ∗. We reduce the inclusion problem L∗(A) ⊆M
to an inclusion problem Sfinite ⊆M where Sfinite is obtained as a finite basis for L∗(A) w.r.t.
6. The direction ⇒ of (†) trivially holds since Sfinite is a subset of L∗(A). For the reverse
direction, assume that ∀s ∈ Sfinite, s ∈M and let u ∈ L∗(A). Since Sfinite is a basis for L∗(A)
there is s ∈ Sfinite such that s 6 u. Since s ∈ M , s 6 u and 6 is M -preserving we have
u ∈M .

4.2.2 Fixpoint Characterization
We work with the complete lattice (℘(Σ∗)|Q|,⊆ × · · · × ⊆), where each Cartesian product
consists of |Q| factors. Given a |Q|-dimensional vector X on ℘(Σ∗) we write Xq for the
q-component of X. Given X ∈ ℘(Σ∗)Q, we define

PostA(X) , 〈⋃a∈Σ,(q′,a,q)∈δXq′a〉q∈Q ∈ ℘(Σ∗)Q .

In turn, we define the map fA , λX.〈{ε | q = iA} ∪ (PostA(X))q〉q∈Q, which allows us to
give the following least fixpoint characterization of L∗(A).

Example 8. Consider the BA C in Figure 3.1. Since C has only one state, vectors have
dimension one. We have fC = λX.{ε} ∪ Xa ∪ Xb. Its Kleene iterates are fCn(∅) = {u ∈
{a, b}∗ | |u| ≤ n− 1} for every n ∈ N.

Proposition 1. L∗(A) = ⋃
p∈F (lfp fA)p.

Proof. The function fA is increasing and the supremum of the increasing sequence of its
Kleene iterates starting at the bottom value ~∅ , (∅, . . . , ∅) of dimension |Q| is the vector {u ∈
Σ∗ | qI u−→∗q}q∈Q. Therefore, by the Knaster–Tarski theorem lfp fA = {u ∈ Σ∗ | qI u−→∗q}q∈Q.
Thus, ⋃p∈F (lfp fA)p = L∗(A).

26

Chapter 4. INCLUSION CHECKING OF LANGUAGES OF FINITE WORDS

Notice that each Kleene iterate of fA is computable. Next we show how to detect if it is a
basis for L∗(A).

4.2.3 Basis Detection
In order to detect finite bases among the Kleene iterates of fA we replace the set inclusion
on ℘(Σ∗), used so far, with the quasiorder v6 ⊆ ℘(Σ∗)× ℘(Σ∗) defined by X v6 Y

4⇐⇒
∀x ∈ X, ∃y ∈ Y, y 6 x. The quasiorder v6 leverage the notion of basis: given X ∈ ℘(Σ∗)
a subset Y ⊆ X is a basis for X w.r.t. 6 whenever X v6 Y . In the following we lift the
notion of basis to |Q|-dimensional vectors component wise and work with the quasiordered
sets (℘(Σ∗)|Q|, v|Q|6), where the ordering v|Q|6 is given by the product v6 × · · · × v6 of |Q|
factors.

As shown by the following lemma when the quasiorder 6 is right-monotonic then fA preserves
bases w.r.t. 6.

Lemma 1. Let 6 be a right-monotonic quasiorder. If B is a basis for X ∈ ℘(Σ∗)|Q| w.r.t.
6|Q|, then fA(B) is a basis for fA(X) w.r.t. 6|Q|.

Proof. Since B ⊆|Q| X and fA is an increasing function, we immediately have fA(B) ⊆|Q| fA(X).
Now, we need to show that fA(X) v|Q|6 fA(B). Let q ∈ Q and y ∈ (fA(X))q. We consider
the case where y is in (PostA(X))q as the case y = ε is straightforward. By definition of fA,
y = xa for some x ∈ Xp, p ∈ Q and a ∈ Σ. Since Xp v6 Bp there is b ∈ Bp such that b 6 x.
Given that 6 is right-monotonic, from b 6 x we can deduce that ba 6 y. Finally, by definition
of fA we have ba ∈ (PostA(B))q. So, we have established that for every component q ∈ Q of
fA we have (fA(X))q v6 (fA(B))q, which concludes the proof.

Proposition below shows that if 6 is a right-monotonic well-quasiorder then to detect a finite
basis it suffices to check whether fAn+1(~∅) v|Q|6 fAn(~∅) holds for two consecutive Kleene iterates
of fA.

Proposition 2. Let 6 be a well-quasiorder. There is a positive integer n such that fAn+1(~∅) v|Q|6
fAn(~∅); and, if 6 is right-monotonic then lfp fA v|Q|6 fAn(~∅).

Proof. The sequence of Kleene iterates of fA is increasing w.r.t. v|Q|6 and since 6 is a well-
quasiorder the quasiordered set (℘(Σ∗)|Q|, v|Q|6) satisfies the ascending chain condition [23].
Therefore, there is a positive integer n such that fAn+1(~∅) v|Q|6 fAn(~∅).

An easy induction that uses Lemma 1 shows that for every k ≥ n we have fAk+1(~∅) v|Q|6 fAk(~∅).
Hence, by transitivity of v|Q|6 we deduce that for every k ≥ n we have fAk(~∅) v|Q|6 fAn(~∅).
Since the sequence of Kleene iterates of fA is increasing we also have fAn(~∅) v|Q|6 fAk(~∅) for
every k ≥ n. We have fAn(~∅)⊆|Q| lfp fA and since lfp fA is the supremum of the sequence of
Kleene iterates of fA we deduce that lfp fA v|Q|6 fAn(~∅). Thus, fAn(~∅) is a basis for lfp fA.

27

Kyveli Doveri

Finally, if the quasiorder 6 is decidable i.e., given x, y ∈ Σ∗ we can decide whether x ≤ y,
then given two finite sets X, Y ⊆ Σ∗ it is also decidable whether X v6 Y holds. Thus, given
a M -suitable quasiorder 6 on Σ∗ by the steps 1–3 we can compute a finite basis for lfp fA
w.r.t. 6.

4.3 Algorithm
In this section, we present Ganty et al.’s algorithm [40] for L∗(A) ⊆M . We also discuss an
optimization of the algorithm that aims to reduce the number of words involved in the fixpoint
computation by keeping antichains at every iteration. Lastly, we compare the algorithms
derived by instantiating the framework with different quasiorders.

Algorithm 1: Algorithm for deciding L∗(A) ⊆M

Data: FA A = (Q, qI , δ, F).
Data: M -suitable quasiorder 6.
Data: Procedure deciding u ∈M given u.

1 Compute fAm(~∅) with least m s.t. fAm+1(~∅) v|Q|6 fAm(~∅);
2 foreach p ∈ F do
3 foreach u ∈ (fAm(~∅))p do
4 if u /∈M then return false;
5 return true;

Theorem 3. Given the required inputs, Algorithm 1 decides the inclusion problem L∗(A) ⊆M .

Proof. Given a M -suitable quasiorder 6 and a procedure deciding membership in M , Algo-
rithm 1 computes in line 1 a finite basis fAm(~∅) for lfp fA w.r.t. 6|Q| as prescribed by Proposi-
tion 2 (each Kleene iterate is computable, given two iterates the check fAk+1(~∅) v6 fAk(~∅) is
decidable and the computation of line 1 terminates because 6 is a well-quasiorder). Hence,
by Proposition 1, ⋃p∈F (fAm(~∅))p is a finite basis for L∗(A) w.r.t. 6. Finally, Algorithm 1
checks in lines 2-4 whether this finite basis is included in M . By M -preservation this basis
satisfies Equation (†) and so we have L∗(A) ⊆M ⇐⇒ ∀u ∈ ⋃p∈F (fAm(~∅))p, u ∈M .

4.3.1 Antichains Optimization
Algorithm 1 remains correct if, at each Kleene iteration we first select, for each q-component,
a basis w.r.t. 6 and then apply fA. As shown by Lemma 1, if B is a basis for fAn(~∅) w.r.t.
6|Q| then fA(B) is a basis for fAn+1(~∅) w.r.t. 6|Q|. Thus, at each step n ≤ m of the iterations
of line 1, we can replace fAn(~∅) by a basis B ⊆|Q| fAn(~∅) and then continue applying fA from
B. In particular, we can select basis that keep antichains for each q-component, that is, bases
of incomparable words.

28

Chapter 4. INCLUSION CHECKING OF LANGUAGES OF FINITE WORDS

4.3.2 The Coarser the Better
Algorithm 1 is parametrized by a M -suitable quasiorder 6 on Σ∗, so that each such quasiorder
yields a slightly different algorithm deciding L∗(A) ⊆ M . Let us discuss how the inclusion
algorithms provided by different quasiorders can be related to each other. Consider two
well-quasiorders 6,6′ ⊆ Σ∗ × Σ+ such that 6 is coarser than 6′ i.e., 6′ ⊆ 6 holds. It turns
out that X v≤′ Y implies X v≤ Y , so that if the Kleene iterate of fA converge in N ′ steps
w.r.t. 6′, then they converge in N ≤ N ′ steps w.r.t. 6, namely, convergence can be “faster”
with a coarser quasiorder. Also, if 6 is coarser than 6′ and X ∈ ℘(Σ∗) is a a nonempty set
then any finite basis for X w.r.t. 6 that is an antichain has at most as many elements as
any finite basis for X w.r.t. ≤′ that is an antichain. Thus, a coarser well-quasiorder may
achieve a smaller finite basis on which to perform the membership queries of Algorithm 1 (see
Example 10 in the following section).

In the following section we provide differentM -suitable quasiorders to instantiate Algorithm 1.

4.4 Quasiorders for Regular Languages
We now present two kinds of quasiorders to be used in Algorithm 1. The first kind of
quasiorders, called state-based quasiorders, are derived from an automaton representation
of M . The second kind, called syntactic, refers to quasiorders independent of any specific
representation of M .

The quasiorders we introduce in this section will be also employed in the following sections,
where we address the inclusion problem for languages of infinite words.

4.4.1 State-based Quasiorders
Given an automaton B = (Q̂, q̂I , δ̂, F̂) and a word u ∈ Σ∗ we define the set

postB(u) , {q ∈ Q̂ | q̂I u−→∗q}

of all the states that u can reach from the initial state q̂I , the set

ctxB(u) , {(q, q′) ∈ Q̂2 | q u−→∗q′}

of all the pairs of states that u "connects" in B and, the subset

ctxB~(u) , {(q, q′) ∈ Q̂2 | q u−→~q′}

of ctxB(u) which keeps only the pairs of states connected by a sequence of transitions that
pass by a final state. Using these sets, we define three quasiorders on Σ∗ that compare words
based on the sets of states that the words can reach or connect in B.

Definition 4.4.1. Given an automaton B = (Q̂, q̂I , δ̂, F̂) we define the following quasiorders
on Σ∗, called the state-based quasiorders:

29

Kyveli Doveri

u 6B v
4⇐⇒ postB(u) ⊆ postB(v) ,

u <∼
B v

4⇐⇒ ctxB(u) ⊆ ctxB(v) ,

u 4B v
4⇐⇒ u <∼

B v ∧ ctxB~(u) ⊆ ctxB~(v) .

Note that we have 4B ⊆ <∼
B ⊆ 6B.

It’s worth noting that 4B is primarily designed for handling the infinite word case (although
it can also be applied in the framework of Ganty et al.), but we include it here for clarity and
organization.

Example 9. Consider the automaton D in Figure 3.1 (b). Since for all u ∈ Σ∗, postD(ua) =
{q} and postD(ub) = postD(ε) = {q0}, we have that u 6D v iff either u, v ∈ Σ∗a or u, v ∈ Σ∗b∪
{ε}. Similarly, we find that u <∼D v iff either u, v /∈ {ε} and u 6D v, or u, v ∈ {ε}. For u ∈ Σ∗
we have ctxD~ (ua) = {(q0, q), (q, q)}. For u ∈ Σ∗ \ b∗ we have ctxD~ (ub) = {(q0, q0), (q, q0)}
and ctxD~ (bk) = {(q, q0)}, for any k ≥ 1. As for the empty word, ctxD~ (ε) = {(q, q)}. Hence,
for all u, v ∈ Σ∗, it turns out that u 4D v holds iff one of the following four cases holds:
(i) u, v ∈ Σ∗a; (ii) u ∈ Σ∗b and v ∈ Σ∗b\b∗; (iii) u, v ∈ b+; (iv) u, v ∈ {ε}.

Proposition 3. The state-based quasiorders are L∗(B)-suitable. Additionally, the quasiorders
<∼
B and 4B are monotonic.

Proof. From the equivalences u ∈ L∗(B) ⇐⇒ postB(u) ∩ F 6= ∅ and u ∈ L∗(B) ⇐⇒
ctxB(u)∩({q̂I}×F) 6= ∅ we deduce that the state-based quasiorders are L∗(B)-preserving. Since
Q is finite they are all well quasiorders. The proof of decidability is trivial by Definition 4.4.1.
Next we show that 6B is right-monotonic. Let u 6B v and a ∈ Σ. Let q ∈ postB(ua). There
is p ∈ postB(u) such that p a→ q. Since u 6B v and p ∈ postB(u) we have p ∈ postB(v), thus
q ∈ postB(va). An analogue reasoning shows that <∼B and 4B are monotonic.

By Proposition 3, Algorithm 1 can be instantiated with any of the state-based quasiorders.
Since 6B is the coarsest among them, its corresponding algorithm yields more pruning when
searching for a counterexample to inclusion as shown by Example 10 (see also discussion in
Section 4.3.2). On the other hand, the quasiorders 6B and 4B verify the stronger property of
both left and right-monotonicity, which as we will see in Section 5.5, is needed to handle the
inclusion problem of context free languages into regular traces. The additional condition on
final states required by 4B will come in handy when deciding the inclusion in (infinite) traces
of Büchi automata (Chapter 5).

Example 10 (The Coarser the Better). We show the benefits of using the coarsest state-based
quasiorder 6B on the family of inclusion problems between the automata {An}n≥2 and {Bn}n≥2
such that L∗(An) ⊆ L∗(Bn) for all n, depicted in Figure 4.1. Let Xn , {aibaj+1 ∈ Σ∗ |
i, j ≥ 0, i + j ≤ n − 1} such that L∗(An) = Xn{b}∗. For any w ∈ L∗(An) we have that
qn ∈ postBn(w), and, since postBn(aba) = {qn}, it holds that aba 6Bn w. Thus, {aba} is a
basis for L∗(An) w.r.t. 6Bn. Since cBn [aibaj+1] = {(n− i, j + 2), (0, qn), (qn, qn)} we deduce
that w 4Bn w′ implies w = w′ for every w,w′ ∈ Xn. Thus, as Xn has size n(n+1)

2 , any basis for
L∗(An) w.r.t. <∼Bn or 4Bn has at least n(n+1)

2 elements. Hence, using the quasiorder 6Bn, a

30

Chapter 4. INCLUSION CHECKING OF LANGUAGES OF FINITE WORDS

(An)
instart q1 q2 · · · qn−1

q′0 q′1 q′2 · · · q′n−1

pn

a a a a

a a a a

b b b b

a a a a

b

(Bn)
1

0

start

2

3n−1

qn

· · ·

a, b a

a

a

a

a

a, b

a, b

Figure 4.1: The families {An}n≥2 and {Bn}n≥2.

single membership query (i.e., u ∈ L∗(Bn)) is needed to decide the inclusion L∗(An) ⊆ L∗(Bn),
as opposed to no less than n(n+1)

2 membership queries for the other quasiorders.

4.4.2 A Syntactic Quasiorder
Given a language M ⊆ Σ∗ we define the following syntactic quasiorder on Σ∗:

u 6M v
4⇐⇒ ∀w ∈ Σ∗, uw ∈M =⇒ vw ∈M .

Proposition 4. If M is a regular language then 6M is M-suitable. Moreover, 6M is the
coarsest M-suitable quasiorder.

Proof. First we show that any M -suitable quasiorder 6 is finer than 6M . Assume u 6 u′

and let w ∈ Σ∗ such that uw ∈ M . By right-monotonicity we have uw 6 u′w. Hence, by
M -preservation u′w ∈M . Thus, u 6M u′.

If M is accepted by a FA B then by Proposition 3, 6B is M -suitable, thus 6B ⊆ 6M . Since
6B is a well-quasiorder and 6B ⊆ 6M , 6M is a well-quasiorder. Decidability comes from the
decidability of the inclusion problem between regular languages. Right-monotonicity and
M -preservation are an easy exercise.

31

Kyveli Doveri

4.5 State-based Algorithms
The state-based quasiorders enable us to derive state-based inclusion algorithms from Algo-
rithm 1, namely, algorithms that, given two FA A = (Q, qI , δ, F) and B = (Q̂, q̂I , δ̂, F̂), decide
whether L∗(A) ⊆ L∗(B) by operating on the states of A and B only, without the need to
store and manipulate words at all. In this section we explain how to obtain such state-based
algorithms using the quasiorders of Definition 4.4.1. We then formally define the state-based
algorithm derived by instantiating Algorithm 1 with the quasiorder 6B.

4.5.1 Data Structures
Comparing two words given a state-based quasiorder requires to compute the corresponding
sets of postB, ctxB and ctxB~ . In the following we show that instead of computing these sets
every time we need to compare two words we can reason directly on the postB, ctxB and ctxB~
information of the words, for comparisons, for applying the fixpoint function, for convergence
check and for membership check. Assume we are computing a new word during the fixpoint
computation, for instance the word ua that is obtained by concatenating the letter a to the
right of u. As shown next postB(ua), ctxB(ua) and ctxB~(ua) can be computed directly from
postB(u), ctxB(u) and ctxB~(u) instead of computing it from “scratch” :

postB(ua) = {q ∈ Q̂ | ∃p ∈ Q̂, p ∈ postB(u), (p, q) ∈ ctxB(a)} , (4.1)

and analogously,

ctxB(ua) = {(p, q) ∈ Q̂2 | ∃p0 ∈ Q̂, (p, p0) ∈ ctxB(u), (p0, q) ∈ ctxB(a)} , (4.2)

and

ctxB~(ua) = {(p, q) ∈ Q̂2 | ∃p0 ∈ Q̂, (p, p0) ∈ ctxB~(u), (p0, q) ∈ ctxB(a)} (4.3)
∪ {(p, q) ∈ Q̂2 | ∃p0 ∈ Q̂, (p, p0) ∈ ctxB(u), (p0, q) ∈ ctxB~(a)} .

Example 11. Consider the BA D in Figure 3.1. Using the above definition it is straightforward
to verify that postD(ab) = {q0} because postD(a) = {q} and ctxD(b) = {(q0, q0), (q, q0)}.
Similarly, we find that ctxD(ab) = {(q0, q0), (q, q0)} because ctxD(a) = {(q0, q), (q, q)} and
ctxD(b) = {(q0, q0), (q, q0)}.

In the following section, we provide a detailed definition of the state-based algorithm derived
using the quasiorder 6B, building upon the ideas explained here.

4.5.2 Detailed Algorithm for 6B

To establish the state-based algorithm with 6B we first define a ’state-based version’ of the
function fA. To do so, we work with the complete lattice (℘(℘(Q̂))|Q|,⊆× · · · × ⊆), where
each Cartesian product consists of |Q| factors. Given X ∈ ℘(℘(Q̂))Q, we define

Post6BA (X) , 〈⋃a∈Σ,(q,a,q′)∈δ{y ? a ∈ ℘(Q̂) | ∃y ∈ Xq′}〉q∈Q ∈ ℘(℘(Q̂))Q ,

32

Chapter 4. INCLUSION CHECKING OF LANGUAGES OF FINITE WORDS

where for y ∈ ℘(Q̂) and a ∈ Σ we define y ? a , {q ∈ Q̂ | ∃q′ ∈ Q̂, q′ ∈ y, (q′, q) ∈ ctxB(a)}.
In turn we define the map f̂A : ℘(℘(Q̂))|Q| → ℘(℘(Q̂))|Q| by

f̂A , λX.〈{{q̂I} | q = q̂I} ∪ (Post6BA (X))q〉q∈Q .

Next, we extend the function postB to sets by defining forX ∈ ℘(Σ∗), postB(X) = ∪x∈XpostB(x).
We also extend it to vectors component-wise.

Lemma 2. For every X ∈ ℘(Σ∗)|Q| we have f̂A ◦ postB(X) = postB ◦ fA(X).

Proof. By Equation (4.1) if y = postB(u), for some u ∈ Σ∗, then y ? a = postB(ua). The proof
then follows directly from the definitions of the functions fA and f̂A.

We check convergence of the fixpoint computation in line 1 of Algorithm 1 by reasoning on
the function f̂A and by using the quasiorder v⊆ on ℘(℘(Q̂)). Using Lemma 2 it is an easy
exercise to establish that for every n ∈ N, f̂ nA(~∅) = postB(fAn(~∅) and, consequently,

fAm+1(~∅) v|Q|6B fAm(~∅) ⇐⇒ f̂m+1
A (~∅) v|Q|⊆ f̂mA (~∅) .

Incidentally, we perform the membership querries of line 4 (asking whether u ∈ L∗(B) given
u) by checking whether the postB associated to the word u contains a final state of B.

Below we present the state-based algorithm obtained by instantiating Algorithm 1 with the
quasiorder 6B.

Algorithm 2: Algorithm for deciding L∗(A) ⊆ L∗(B)
Data: Büchi automata A = (Q, qI , δ, F) and B = (Q̂, q̂I , δ̂, F̂)

1 Compute f̂mA (~∅) with least m s.t. f̂m+1
A (~∅) v|Q|⊆ f̂mA (~∅);

2 foreach p ∈ F do
3 foreach x ∈ (f̂mA (~∅))p do
4 if x ∩ F̂ = ∅ then return false;
5 return true;

Theorem 4. Given the required inputs, Algorithm 2 decides the inclusion problem L∗(A) ⊆
L∗(B).

Proof. Follows from Theorem 3.

Proposition 5. Let n , |Q| and n̂ , |Q̂|. The running time of the state-based algorithm is
|Σ| · n2 · 2O(n̂).

Proof. At worst the computation of line 1 of Algorithm 2 adds exactly one element of ℘(Q̂)
at each iteration step k to some component of the n-dimensional vector f̂ kA(~∅), so that n · 2n̂
is an upper bound on the number of iterations needed to compute f̂mA (~∅). For X, Y ⊆ ℘(Q̂)
the time to check X v⊆ Y is bounded by 2O(n̂). To infer an upper bound on the runtime of

33

Kyveli Doveri

line 1 we also need to multiply the above expression by a factor |Σ| · n since the number of
concatenations in the fixpoint function depends on the size of the alphabet and on n.

The number of iterations of the loops of lines 2 and 3 is n and 2n̂ respectively. Since all loops
are nested, we multiply these bounds to end up with n · 2n̂ as an upper bound on the number
of times the check in line 4 is performed. The runtime for each membership query is upper
bounded by 2O(n̂). We conclude from the above that the runtime of Algorithm 2 is at most
|Σ| · n2 · 2O(n̂).

To conclude this chapter, we present an illustrative example of an execution of Algorithm 2.

4.5.3 Illustrative Example
We show the execution of a run of the state-based algorithm obtained on the FA C and D
depicted in Figure 3.1. As a result, the algorithm will correctly decide that L∗(C) is not
included in L∗(D) since, for example b ∈ L∗(C) but b /∈ L∗(D). Observe that since C consists
of a single state, vectors are of dimension one. First, the algorithm evaluates the sequence
{f̂ nC (∅)}n∈N where f̂ nC (∅) ∈ ℘(℘({q0, q})) for every n ∈ N and f̂C is defined for X ∈ ℘(℘({q0, q}))
by

f̂C(X) = {{q0}} ∪
⋃
c∈{a,b}{s ∈ {q0, q} | ∃x ∈ X, p ∈ x, (p, s) ∈ ctxD(c)} .

We have:

• f̂ 1
C (∅) = {{q0}},

• f̂ 2
C (∅) = {{q0}, {q}},

• f̂ 3
C (∅) = {{q0}, {q}}.

Hence, the computations for the prefix iterates stop at the third iteration and the algorithm
continues with the membership check of line 4 on the elements of f̂ 2

C (∅). Since q0 /∈ F̂ the
membership check fails for the element {q0} of f̂ 2

C (∅), which intuitively, corresponds to the
counterexample b that belongs to L∗(C) but not L∗(D). Hence, the inclusion L∗(C) ⊆ L∗(D)
does not hold.

34

Chapter 5

INCLUSION FOR INFINITE WORDS

In this chapter, we address the problem of deciding inclusion between regular languages of
infinite words. We then adapt our framework to the inclusion problem of ω-context free
languages into ω-regular languages.

5.1 Overview
In this section we outline our framework for solving the inclusion problem Lω(A) ⊆M , where
A = (Q, qI , δ, F) is a BA and M is a ω-regular language. We follow the same principles as in
the finite word case (Chapter 4): using an ordering on words we reduce the inclusion check to
a finite number of membership queries in M applied to words from Lω(A). To obtain this
reduction, we leverage a well-known theorem:

Theorem 5 ([17]). For A a BA and M a ω-regular language we have Lω(A) ⊆ M ⇐⇒
∀uvω ∈ Lω(A), uvω ∈M .

Our goal is to define a finite subset Sfinite ⊆ Σ∗ ×Σ+ of decompositions of ultimately periodic
words in Lω(A) such that the following equivalence holds.

Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ Sfinite, uv
ω ∈M . (††)

A Sufficient Subset of Decompositions We begin by defining the following subset

S ,
⋃
p∈F LqI ,p × (Lp,p\{ε})

of decompositions of ultimately periodic words in Lω(A) where for every pair p, q ∈ Q of states
of A, Lp,q , {u ∈ Σ∗ | p u−→∗q} is the language containing all the words that can lead from
state p to q according to A. This subset is sufficient for the inclusion problem Lω(A) ⊆M as
shown by the next lemma.

Lemma 3. Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ S, uvω ∈M .

Proof. By Theorem 5 it suffices to show that for every (u, v) ∈ Σ∗ × Σ+ we have uvω ∈
Lω(A) ⇐⇒ ∃(u′, v′) ∈ S, uvω = u′v′ω. By definition of the languages Lp,q it is immediate

35

Kyveli Doveri

that for every (u, v) ∈ S there is an accepting run of A on uvω, thus uvω ∈ Lω(A). For
the converse implication, we notice that every accepting run of A on uvω has a final state
p ∈ F that appears infinitely often, thus such a run can be factorized as qI u′−→∗p v′−→∗p where
uvω = u′v′ω.

Reduction to a Finite Basis We employ a pair 6,4 of quasiorders on Σ∗ in order to
derive a finite basis Sfinite ⊆ Σ∗ × Σ+ for S w.r.t. 6×4. Expectedly, this pair of quasiorders
needs to verify certain requirements for (††) to hold and yield a correct algorithm.

Definition 5.1.1. Given a ω-regular language M ⊆ Σ∗ we say that a pair 6,4 of quasiorders
on Σ∗ is M -preserving when for every (u, v), (u′, v′) ∈ Σ∗ × Σ+, if uvω ∈M,u 6 u′ and v 4
v′ then u′v′ω ∈M . We say that 6,4 is M -suitable if it is a M -preserving, right-monotonic
and decidable pair of well-quasiorders.

The intuition behind these requirements is the same as in Section 4.1: The “well” property is for
finiteness of the basis1, the preservation property for completeness, and the right-monotonicity
for computation.

5.2 Framework
In this section we give a fixpoint characterization for S and show that we can compute a
finite basis for it, provided that we have a suitable pair of quasiorders. We then present our
algorithm for the inclusion problem Lω(A) ⊆M .

5.2.1 Fixpoint Characterization
To obtain a least fixpoint characterization for S we work with the complete lattice (℘(Σ∗)|Q|,⊆×
· · ·×⊆) and follow the notations from Section 4.2.2. We recall the definition ofX ∈ ℘(Σ∗)|Q| 7→
PostA(X) , 〈⋃a∈Σ,q∈δ(q′,a) Xq′a〉q∈Q ∈ ℘(Σ∗)Q from Section 4.2.2. We obtain a fixpoint char-
acterization of the prefixes of S using the function

fA = λX.〈{ε | q = iA} ∪ (PostA(X))q〉q∈Q

and, a fixpoint characterization of the periods using for every p ∈ F the functions

rA,p = λX.〈{a ∈ Σ | q ∈ δ(p, a)} ∪ (PostA(X))q〉q∈Q .

In turn, we achieve the fixpoint characterization of S given in the following proposition.

Proposition 6. S = ⋃
p∈F (lfp fA)p × (lfp rA,p)p.

Proof. By an analogue reasoning as in the proof of Proposition 1 we find that LqI ,p = (lfp fA)p
and (Lp,p\{ε}) = (lfp rA,p)p. Thus, S = ⋃

p∈F (lfp fA)p × (lfp rA,p)p.

1The quasiorder 6×4 is a well-quasiorder when both 6 and 4 are well-quasiorders.

36

Chapter 5. INCLUSION FOR INFINITE WORDS

Example 12. Consider the BA C in Figure 3.1. Since C has only one state, vectors have
dimension one. We have that fC = λX.{ε} ∪Xa ∪Xb and rC = λX.{a, b} ∪Xa ∪Xb, so that
{a, b}∗ × {a, b}+ = lfp fC × lfp rC.

5.2.2 Basis Detection
We fix a M -suitable pair 6,4 of quasiorders on Σ∗. We detect a basis for the least fixed point
of fA and rA,p among their Kleene iterates by using the quasiorders v|Q|6 and v|Q|4 on ℘(Σ∗)|Q|
defined by X vn Y ⇐⇒ ∀q ∈ Q, ∀x ∈ Xq,∃y ∈ Yq, y n x for n ∈ {6,4}, as explained in
Section 4.2.3 (Lemma 1 and Proposition 2 hold for the functions rA,p as well).

5.2.3 Algorithm
We now present our algorithm which given a M -suitable pair of quasiorders 6,4 along with
a procedure that can determine membership in the language M , solves the inclusion problem
Lω(A) ⊆M .

In line 1, Algorithm 3 computes a finite basis fAm(~∅) for the least fixed point lfp fA w.r.t. 6.
Subsequently, for each p ∈ F , Algorithm 3, at line 3, computes a finite basis rA,pm

′(~∅) for
the least fixed point lfp rA,p w.r.t. 4. Lastly, at lines 4–5, the algorithm proceeds to verify
whether each ultimately periodic word within Sfinite = ⋃

p∈F (fAm(~∅))p × (rA,pm
′(~∅))p belongs

to M .

Algorithm 3: Algorithm for deciding Lω(A) ⊆M

Data: BA A = (Q, qI , δ, F).
Data: M -suitable pair 6,4.
Data: Procedure deciding uvω ∈M given (u, v).

1 Compute fAm(~∅) with least m s.t. fAm+1(~∅) v|Q|6 fAm(~∅);
2 foreach p ∈ F do
3 Compute rA,pm

′(~∅) with least m′ s.t. rA,pm
′+1(~∅) v|Q|4 rA,pm

′(~∅);
4 foreach u ∈ (fAm(~∅))p, v ∈ (rA,pm

′(~∅))p do
5 if uvω /∈M then return false;
6 return true;

Notice that by omitting the fixpoint computations for the periods at line 3 we obtain
Algorithm 3.

Theorem 6. Given the required inputs, Algorithm 3 decides the inclusion problem Lω(A) ⊆M .

Proof. The subset Sfinite = ⋃
p∈F (fAm(~∅))p × (rA,pm

′(~∅))p is a finite basis for S w.r.t. 6×4.
Hence, since the pair 6,4 is M -preserving, by Lemma 3 we deduce that Sfinite satisfies
Equation (††). Thus, we have

Lω(A) ⊆M ⇐⇒ ∀p ∈ F, ∀u ∈ (fAm(~∅))p,∀v ∈ (rA,pm
′(~∅))p, uvω ∈M .

37

Kyveli Doveri

Each Kleene iterate of fA and rA,p is computable, the checks fAn+1(~∅) v|Q|6 fAn(~∅) and
rA,pn+1(~∅) v|Q|4 rA,pn(~∅) are decidable and since 6 and 4 are well-quasiorders the computations
at line 1 and line 3 terminate.

Antichain Optimization The analogue arguments as in Section 4.3.1 show that Algorithm 3
remains correct if at each iteration we discard from a component of fAm(~∅) or rA,pm

′(~∅) words
that are subsumed by others, and that in particular we can keep antichains. We refer to the
optimization that keeps antichains for all the sets as the antichain optimization.

The Coarser the Better The discussion in Section 4.3.2 applies similarly to Algorithm 3:
a coarser pair of quasiorders may achieve a smaller finite basis on which to perform the
membership queries of line 5 (see Example 14 in the following section).

5.3 Suitable Pairs of Quasiorders
In the preceding section, we presented Algorithm 3 which is parameterized by a pair of
quasiorders. Notably, each distinct pair of quasiorders leads to a variation of the algorithm.
In this section we discuss different pairs of quasiorders that can be used in Algorithm 3.

5.3.1 State-based Pairs
We start with the state-based quasiorders of Definition 4.4.1.

Proposition 7. Let B be a BA, the pairs 6B,4B and <∼B,4B and 4B,4B are L(B)-suitable.

Proof. All the state-based quasiorders are right-monotonic, decidable and well-quasiorders as
shown by Proposition 3. Next we show that the pairs in the statement are L(B)-preserving,
starting with 6B,4B. Let (u, v), (u′, v′) ∈ Σ∗ × Σ+ such that uvω ∈M , u 6B u′ and v 4B v′.
Since uvω ∈ M there is an accepting run e of B of the form e : qI

u→ q1
v→ q2

v→ q3 · · ·
Since postB(u) ⊆ postB(u′) and ctxB(u) ⊆ ctxB(u′) from e we deduce a run e′ : qI

u′→ q1
v′→

q2
v′→ q3 · · · of B on u′v′ω. Since e is accepting (qj, qj+1) ∈ ctxB~(v) for infinitely many j’s.

Since ctxB~(v) ⊆ ctxB~(v′) we thus deduce that e′ is accepting. Thus, u′v′ω ∈ M . Since
4B ⊆ <∼

B ⊆ 6B and 6B,4B is L(B)-preserving we deduce that <∼B,4B and 4B,4B are also
L(B)-preserving.

Remark 7. The supergraphs of [3, Def. 6] endowed with their subsumption orders coincide
with our qo 4B. Without the subsumption order they coincide with 4B ∩4B−1.

Example 13 shows a run of Algorithm 3 instantiated with the pair 6D,4D on the BA C and
D depicted in Figure 3.1. Example 14 shows the benefits of using the coarser pair 6B,4B of
state-based quasiorders.

Example 13 (Run of Algorithm 3). We consider the BA of Figure 3.1 for which we want
to check whether L(C) ⊆ L(D) holds using the pair 6D,4D of state-based quasiorders. From
Example 12 we have that fC(∅) = {ε}, fC2(∅) = {ε, a, b} and fC3(∅) = {ε, a, b, aa, ab, ba, bb}.
From Example 9, for u ∈ {aa, ba} and v ∈ {ab, bb}, we have that a 6D u and b 6D v, while

38

Chapter 5. INCLUSION FOR INFINITE WORDS

a and ε are incomparable for 6D. Hence, fC3(∅) v6D fC2(∅) so that a finite basis of lfp fC
is achieved by fC2(∅). Similarly we have rC2(∅) v4D rC(∅). Thus, the membership check is
performed on the elements of fC2(∅)× rC(∅) = {ε, a, b}× {a, b}, and for (a, b) ∈ fC2(∅)× rC(∅),
the word abω is a witness that Lω(C) 6⊆ Lω(D).

Example 14 (The Coarser the Better). The family of inclusion problems Lω(An) ⊆ Lω(Bn)
in Figure 4.1 shows the benefits of using the coarser pair 6B,4B of state-based quasiorders.
From Example 10 in Section 4.4.1 we deduce that a basis for Lin,pn w.r.t. 6Bn has size one
and likewise, a basis for L∗(Anpn

pn
)\{ε} = b+ w.r.t. 4Bn. Thus, using the pair of quasiorders

6Bn ,4Bn, a single membership query (i.e., u ∈ Lω(Bn)) is needed to decide the inclusion
Lω(An) ⊆ Lω(Bn), as opposed to no less than n(n+1)

2 membership queries for the other pairs
of Proposition 7.

In the work by Parolini [70], various suitable pairs of quasiorders are defined based on
simulation relations on the states of the BA. These simulation-based quasiorders are coarser
than the state-based pairs introduced in this section, while still being finer than the syntactic
pair, which will be discussed next.

5.3.2 A Syntactic Pair
Given a ω-regular language M ⊆ Σω we define the following syntactic quasiorders:

u 6Mω v
4⇐⇒ ∀ξ ∈ Σω, uξ ∈M =⇒ vξ ∈M ,

u 4M v
4⇐⇒ u 6Mω v ∧ (∀s, t ∈ Σ∗, s(ut)ω ∈M =⇒ s(vt)ω ∈M) .

Deciding these syntactic quasiorders is as hard as the inclusion problem between ω-regular
languages. Nevertheless, the syntactic quasiorders act as a gold standard for quasiorders in
the sense formalized in the following proposition.

Proposition 8. If M is a ω-regular language then 6Mω ,4M is M -suitable. Moreover, if 6,4
is a pair of M-suitable quasiorders such that 4 ⊆ 6 then 6 ⊆ 6Mω and 4 ⊆ 4M .

Proof. Let 6,4 be a pair of M -suitable quasiorders such that 4 ⊆ 6. First we show that
6 ⊆ 6Mω and 4 ⊆ 4M . Let u 6 u′. Since M is ω-regular for every w ∈ Σ∗ the language
w−1M is ω-regular. Thus, by Theorem 5 to show that u 6Mω u′ it suffices to show that
∀stω ∈ u−1M, stω ∈ u′−1M . Let stω ∈ u−1M . Since 6 is right-monotonic from u 6 u′

we deduce us 6 u′s. Since ustω ∈ M , us 6 u′s, t 4 t and 6,4 is M -preserving we have
u′stω ∈ M , thus stω ∈ u′−1M . Hence, u 6Mω u′. Let u 4 u′. Since 4 ⊆ 6 ⊆ 6Mω we have
u 6Mω u′. Let (s, t) ∈ s, t ∈ Σ∗ such that s(ut)ω ∈M . Since 4 is right-monotonic from u 4 u′

we deduce ut 4 u′t. Since s(ut)ω ∈ M , s 6 s, ut 4 u′t and 6,4 is M -preserving we have
s(u′t)ω ∈M , thus u 4M u′.

Next we show that 6Mω ,4M is M -suitable. Let B be a BA accepting M . Since <∼B,4B is
M -suitable by what was previously shown we have <∼B ⊆ 6Mω and 4B ⊆ 4M and since <∼B
and 4B are well-quasiorders (Proposition 7) we deduce that 6Mω and 4M are well-quasiorders.

39

Kyveli Doveri

Let uvω ∈ M , u 6Mω u′ and v 4M v′. Form uvω ∈ M and u 6Mω u′ we deduce u′vω ∈ M .
From v 4M v′ and u′(vε)ω ∈M we deduce u′v′ω ∈M . Thus, 6Mω ,4M is M -preserving.

It is an easy exercise to show that 6Mω and 4M are right-monotonic and that given a BA for
M deciding the quasiorders 6Mω and 4M reduces to deciding an inclusion between two BA
derived from the BA for M .

5.4 State-based Algorithm
In this section we instantiate Algorithm 3 with the pair 6B,4B of state-based quasiorders of a
BA B = (Q̂, q̂I , δ̂, F̂) accepting M . From this instantiation, we derive a state-based inclusion
algorithm deciding Lω(A) ⊆ Lω(B).

Data Structures. Thanks to the equalities (4.1), (4.2) and (4.3) in Section 4.5.1 the postB,
ctxB and ctxB~ of newly added words in the functions fA and rA,p can be inductively computed.
Hence, the fixpoint computations at line 1 and line 3 of Algorithm 3 instantiated with the
state-based pair of quasiorders 6B,4B can be implemented by manipulating directly subsets
of ℘(Q̂) (for the prefixes) and pairs of subsets of ℘(Q̂2) (for the periods). Next, we provide a
detailed definition of this implementation.

5.4.1 Fixpoint Computation
In Section 4.5.2 we defined the state-based version f̂A : ℘(℘(Q̂))|Q| → ℘(℘(Q̂))|Q| of fA on the
complete lattice (℘(℘(Q̂))|Q|,⊆× · · · ×⊆)2. Next, we do the analogue with the functions rA,p
i.e., we define functions r̂A,p : ℘(℘(Q̂2)×℘(Q̂2))|Q| → ℘(℘(Q̂2)×℘(Q̂2))|Q| such that for every
X ∈ ℘(Σ∗)Q we have

r̂A,p(〈{(ctxB(u), ctxB~(u)) | u ∈ Xq}〉q∈Q) = 〈{(ctxB(y), ctxB~(y)) | y ∈ (rA,p(X))q}〉q∈Q .

To do so, we work with the complete lattice (℘(℘(Q̂2) × ℘(Q̂2))|Q|,⊆2 × · · · × ⊆2) and
⊆2 , ⊆×⊆ and given X ∈ ℘(℘(Q̂2)× ℘(Q̂2))Q, we define Post4BA (X) ∈ ℘(℘(Q̂2)× ℘(Q̂2))Q
by

Post4BA (X) , 〈⋃a∈Σ,q∈δ(q′,a){
(
x1 ◦ ctxB(a), x1 ◦ ctxB~(a) ∪ x2 ◦ ctxB(a)

)
| (x1, x2) ∈ Xq′}〉q∈Q ,

where, given two binary relations x, x′ ∈ ℘(Q̂2) on states of B, the notation x ◦ x′ denotes
their composition.

In turn for every p ∈ F we define the maps

r̂A,p = λX.〈{(ctxB(a), ctxB~(a)) | q ∈ δA(p, a)} ∪ (Post4BA (X))q∈Q〉q∈Q .

We check convergence of the fixpoint computations (lines 1–3 of Algorithm 3) by reasoning
on the functions f̂A and r̂A,p and by using the quasiorders v⊆ on ℘(℘(Q̂)) for prefixes and
v⊆×⊆ on ℘(℘(Q̂2)× ℘(Q̂2)) for periods. Incidentally, as we show below, we can perform the
membership checks of line 5 (asking whether uvω ∈ Lω(B) given u and v) using the postB
associated to the prefix u and ctxB-ctxB~ associated to the period v and nothing else.

2each Cartesian product consists of |Q| factors

40

Chapter 5. INCLUSION FOR INFINITE WORDS

5.4.2 Membership Check
To decide membership in Lω(B) we use the membership predicate IncB defined for x ∈ ℘(Q̂)
and y1, y2 ∈ ℘(Q̂2) as follows:

IncB(x, y1, y2) , ∃q, p ∈ Q̂, q ∈ x ∧ (q, p) ∈ y∗1 ∧ (p, p) ∈ y∗1 ◦ y2 ◦ y∗1 ,

where, given two binary relations y, y′ ∈ ℘(Q̂2) on states of B, the notation y ◦ y′ denotes
their composition, and y∗ denotes the Kleene closure of y.

Proposition 9. For all (u, v) ∈ Σ∗ × Σ+, IncB(postB(u), ctxB(v), ctxB~(v)) ⇐⇒ uvω ∈
Lω(B) ,

Proof. Let (u, v) ∈ Σ∗ × Σ+. We have (p, q) ∈ ctxB(v)∗ ⇐⇒ ∃n, (p, q) ∈ ctxB(vn).
Therefore, IncB(postB(u), ctxB(v), ctxB~(v)) holds iff there are q, p ∈ Q̂ and two positive
integers n,m such that q ∈ postB(u), (q, p) ∈ ctxB(vn) and (p, p) ∈ ctxB~(vm). Thus,
IncB(postB(u), ctxB(v), ctxB~(v)) holds iff there is an accepting run of B on uvω of the form
q̂I

u−→∗q vn

−→∗p vm

−→F
∗p.

5.4.3 Algorithm and Complexity
Our state-based algorithm is Algorithm 4 below.

Algorithm 4: Algorithm for deciding Lω(A) ⊆ Lω(B)
Data: Büchi automata A = (Q, qI , δ, F) and B = (Q̂, q̂I , δ̂, F̂)

1 Compute f̂mA (~∅) with least m s.t. f̂m+1
A (~∅) v|Q|⊆ f̂mA (~∅);

2 foreach p ∈ F do
3 Compute r̂m′A,p(~∅) with least m′ s.t. r̂m′+1

A,p (~∅) v|Q|⊆×⊆ r̂m′A,p(~∅);
4 foreach x ∈ (f̂mA (~∅))p, (y1, y2) ∈ (r̂m′A,p(~∅))p do
5 if ¬IncB(x, (y1, y2)) then return false;
6 return true;

Theorem 8. Given the required inputs, Algorithm 4 decides the inclusion problem Lω(A) ⊆
Lω(B).

Proof. Follows from Theorem 6.

Proposition 10. Let n , |Q| and n̂ , |Q̂|. The running time of the state-based algorithm is
|Σ| · n3 · 2O(n̂2).

Proof. By similar arguments as in the proof of Proposition 5 we find that an upper bound on
the runtime of lines 1 and 3 is |Σ| · n2 · 2O(n̂2). The runtime for the state-based membership
query at line 5 is upper bounded by 2O(n̂2). Finally, the number of iterations of the loops of
lines 2 and 4 is n and 2n̂ · 22n̂2 respectively. Since these loops are nested, we multiply these
bounds to end up with an upper bound |Σ| · n3 · 2O(n̂2) on the runtime of Algorithm 4.

41

Kyveli Doveri

We implemented Algorithm 4 with the antichain optimization in a tool called BAIT[9]. In
Section 6.5, we provide more details on BAIT and present our experiments.

We conclude this section with an illustrative example of a run of Algorithm 4.

5.4.4 Illustrative Example
We show the execution of a run of Algorithm 4 obtained on the BA C and D depicted in
Figure 3.1. As a result, the algorithm will correctly decide that Lω(C) is not included in
Lω(D) (e.g., abω ∈ Lω(C) but abω /∈ Lω(D)).

As shown in Section 4.5.3 the fixpoint computation at line 1 computes f̂ 2
C (∅) = {{q0}, {q}}.

Next, the algorithm evaluates the sequence {r̂nC (∅)}n∈N where r̂nC (∅) ∈ ℘(℘({q0, q}2) ×
℘({q0, q}2)) for every n ∈ N and r̂C is defined for X ∈ ℘(℘({q0, q}2)× ℘({q0, q}2)) by

r̂C(X) = {(y, y), (z1, z2)} ∪ Post4DC (X)
where, y , {(q0, q), (q, q)}, z1 , {(q0, q0), (q, q0)}, z2 , {(q, q0)} and

Post4DC (X) , {(p1 ◦ ctxD(c), p1 ◦ ctxD~ (c) ∪ p2 ◦ ctxD(c)) | c ∈ {a, b} ∧ (p1, p2) ∈ X} .
Note that y = ctxD(a) = ctxD~ (a), z1 = ctxD(b) and z2 = ctxD~ (b). We then have:

• r̂1
C (∅) = {(y, y), (z1, z2)}.

• r̂2
C (∅) = {(y, y), (z1, z2), (z1, z1)}.

Since (z1, z2) ⊆2 (z1, z1) we have r̂2
C (∅) v⊆×⊆ r̂1

C (∅). Thus, the computations for the period
iterates stop at the second iteration. It turns out that ¬IncD({q}, (z1, z2)): this, intuitively,
corresponds to the counterexample abω that belongs to Lω(C) but not Lω(D). Hence, the
inclusion Lω(C) ⊆ Lω(D) does not hold.

5.5 Extension: ω-context free ⊆ ω-regular
In this section, we extend the framework presented previously in this chapter to address the
inclusion problem Lω(P) ⊆ M , where P = (Q, qI ,Γ, δ, F) is a BPDA and M is a ω-regular
language.

First, we observe that ultimately periodic words suffice once again for the inclusion problem.

Theorem 9. Let P be a BPDA and M a ω-regular language we have Lω(P) ⊆ M ⇐⇒
∀uvω ∈ Lω(P), uvω ∈M .

Proof. Suppose ∀uvω ∈ Lω(P), uvω ∈ M and Lω(P) ∩ (Σω\M) non empty. The language
Lω(P) ∩ (Σω\M) is an ω-context free language [19] and since it is not empty one can show
that it contains an ultimately periodic word. We thus obtain a contradiction.

Next, we want to derive a finite subset Sfinite ⊆ Σ∗ × Σ+ of decompositions of ultimately
periodic words of Lω(P) such that

Lω(P) ⊆M ⇐⇒ ∀(u, v) ∈ Sfinite, uv
ω ∈M . (††cf)

42

Chapter 5. INCLUSION FOR INFINITE WORDS

To achieve this, the idea remains the same as before. We first define a sufficient subset of
decompositions of ultimately periodic words of Lω(P) and then, given a pair of M -preserving
well-quasiorders 6,4 we derive Sfinite as a finite basis for this subset w.r.t. 6×4.

5.5.1 A Sufficient Subset of Decompositions
For every pair of configurations (q, α), (p, β) ∈ Q × Γ we define the following languages of
finite words:

L(q,α),(p,β) , {u ∈ Σ∗ | (q, α) `u (p, βw) for some w ∈ Γ∗} ,
L~(q,α),(p,β) , {u ∈ Σ∗ | (q, α)`~u(p, βw) for some w ∈ Γ∗} .

In turn, we define Scf , ⋃(q,γ)∈Q×Γ L(qI ,⊥),(q,γ) × (L~(q,γ),(q,γ)\{ε}) which as shown by the next
lemma satisfies Equation (††cf).

Lemma 4. Lω(P) ⊆M ⇐⇒ ∀(u, v) ∈ Scf , uvω ∈M .

Proof. It suffices to show that for every (u, v) ∈ Σ∗ × Σ+ we have uvω ∈ Lω(P) ⇐⇒
∃(u′, v′) ∈ Scf , uvω = u′v′ω. The direction ⇐ is straightforward. For the reverse direction let
uvω ∈ Lω(P) and consider an accepting run e : (qI ,⊥)`a1 (q1, α1)`a2 (q2, α2)`a3 . . . where
uvω = a1a2 . . . and for every n ≥ 1, αn = γnwn for some γn ∈ Γ and wn ∈ Γ∗. First we
observe that there is a subsequence {(qsn , αsn)}n∈N of configurations of e such that

1. ∀n, (qsn , αsn) = (q, γwn) for some (q, γ) ∈ Q× Γ,

2. ∀n,∀m ≥ sn, |αsn| ≤ |αm|.

Since e is accepting, we can assume that every fragment

(qsn , αsn)`∗asn+1...asn+1 (qsn+1 , αsn+1)

of e includes a configuration whose state is final i.e.,

(qsn , αsn)`~asn+1...asn+1 (qsn+1 , αsn+1) .

Let ∆v = {v[i] | i = 1, . . . , |v|} ∪ {ε} be the alphabet where each letter v[i] of v is seen as
a distinct symbol. We can assume that as0as0+1 . . . only contains letters in ∆v, that every
fragment (qsn , αsn)`~asn+1...asn+1 (qsn+1 , αsn+1) always starts with the same letter and that
asn+1 . . . asn+1 contains all letters in ∆v\{ε}. Hence, for u′ = a1 . . . as0 and v′ = as0+1 . . . asn+1

we have uvω = u′v′ω, u′ ∈ L(qI ,⊥),(q,γ) and thanks to item 2, v′ ∈ L~(q,γ),(q,γ)\{ε}. Thus,
(u′, v′) ∈ Scf .

5.5.2 Fixpoint Computation of a Finite Basis
First, we establish a characterization of the subset Scf . As for the ω-regular case, we show
that Scf can be described using least fixpoint operators.

The languages L(qI ,⊥),(q,γ) and (L~(q,γ),(q,γ)\{ε}) defining Scf are context-free, and thus, they can
be recognized by CFGs. Consequently, as demonstrated by the first part of the proposition

43

Kyveli Doveri

below, there exist two functions f(q,γ) and r(q,γ) over vectors of sets of words, such that
L(qI ,⊥),(q,γ) = (lfp f(q,γ))1 and L~(q,γ),(q,γ)\{ε} = (lfp r(q,γ))1. We thus have

Scf = ⋃
(q,γ)∈Q×Γ(lfp f(q,γ))1 × (lfp r(q,γ))1 .

Proposition 11. Let G be a CFG and k the number of its variables.

1. G induces an increasing function f : ℘(Σ∗)k → ℘(Σ∗)k such that L(G) = (lfp f)1.
Moreover, every Kleene iterate of f is computable.

2. If n is a well-quasiorder on ℘(Σ∗) then there is a positive integer n such that f n+1(~∅) vkn
f n(~∅) ; and, if n is monotonic then lfp f vkn f n(~∅).

Proof. 1. We define the function f over ℘(Σ∗)k i.e., over the k-dimensional vectors of sets
of words, where k is the number of variables of our grammar G. Let Y = (Y1, . . . , Yk) ∈
℘(Σ∗)k. For each j ∈ [1, k], the j-th component of f (Y) is defined as

(f (Y))j ,
⋃

Xj→XkXk′∈P
YkYk′ ∪

⋃
a∈Σ∪{ε}, Xj→a∈P

a

Notice that f is increasing in the complete lattice of set ℘(Σ∗)k equipped with the
cartesian product of k set inclusions ⊆ × · · · × ⊆. Therefore, by the Knaster–Tarski
theorem lfp f = ({u ∈ Σ∗ | Xj →∗ u})j∈[1,k]. Thus, L(G) = (lfp f)1.

2. Analogue to the proof of Proposition 2 and by adapting Lemma 1.

By Proposition 11 each Kleene iterate of f(q,γ) and r(q,γ) is computable. Furthermore, when
we have a pair of M -suitable quasiorders 6,4, and both of these quasiorders are monotonic,
we can compute a finite basis for lfp f(q,γ) and lfp r(q,γ). Thus, we can compute a finite basis
for Scf w.r.t. 6×4.

Quasiorders for the Context-Free Case

Given a BA B representing M the pairs <∼B,4B and 4B,4B are M -suitable as shown by
Proposition 7. Furthermore, by Proposition 3 the quasiorders <∼B and 4B are monotonic.
Thus, we can use them in our framework to decide the inclusion Lω(P) ⊆ M . Just as in
Section 5.4, we can employ these quasiorders to formulate a purely "state-based" algorithm
deciding Lω(P) ⊆M .

44

Chapter 6

FORQ-BASED INCLUSION

In this chapter we focus once again on the inclusion problem Lω(A) ⊆M , where A is a BA
andM is a ω-regular language. The difference with respect to the previous chapter is that now
we use an unbounded number of quasiorders to filter the ultimately periodic words of Lω(A).
The motivation for doing so is to obtain more pruning when searching for a counterexample
to inclusion.

6.1 Foundations
We consider the inclusion problem Lω(A) ⊆M , where A = (Q, qI , δ, F) is a BA and M is a
ω-regular language.

To tackle this problem, our goal is to derive a finite subset Tfinite ⊆ Σ∗×Σ+ of decompositions
of ultimately periodic words from Lω(A) that should satisfy Equivalence (††), as shown below.

Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ Tfinite, uvω ∈M . (††)

The difference with the approach in Section 5.1, is that now we will use a family of right
quasiorders to derive Tfinite, a notion introduced next.

Definition 6.1.1. A Family of Right Quasiorders (FORQ) is a pair 〈6, {4u}u∈Σ∗〉 where 6 is
a right-monotonic quasiorder on Σ∗ as well as every 4u where u ∈ Σ∗. Additionally, we require
the following constraint, called the FORQ-constraint: ∀u, u′ ∈ Σ∗, u 6 u′ ⇒ 4u′ ⊆ 4u.

Given a FORQ 〈6, {4u}u∈Σ∗〉 the quasiorder 6 is used to compare the prefixes of ultimately
periodic words and the quasiorders 4u, where u is a prefix, to compare their periods. Observe
that the ordering used for the periods depends on the prefixes so that a period may or may
not be discarded depending on the prefix under consideration. The FORQ constraint tells us
that if the periods v and w compare for a prefix u′, that is v 4u′ w, then they also compare
for every prefix u subsuming u′, that is v 4u w if u 6 u′.

The property of right-monotonicity of the quasiorders of a FORQ is needed to iteratively
compute Tfinite via the fixpoint characterizations of Section 5.2.1. Next we adapt the notion
of suitability (Definition 5.1.1) to a family of quasiorders. It is worth pointing out that for

45

Kyveli Doveri

a FORQ to be suitable the inverse of the order on the prefixes needs also to satisfy the
"well"-property.

Definition 6.1.2. We say that a FORQ 〈6, {4u}u∈Σ∗〉 is M -preserving when ∀u, û ∈
Σ∗, v, v̂ ∈ Σ+ if uvω ∈ L, u 6 û, v 4û v̂ and û v̂ 6 û then ûv̂ω ∈ L. A FORQ 〈6, {4u}u∈Σ∗〉
is said to be M -suitable when it is M -preserving and when 6, its inverse 6−1, and 4u for
every u ∈ Σ∗ are all decidable well-quasiorders.

In the following, we derive Tfinite using a M -suitable FORQ 〈6, {4u}u∈Σ∗〉. To achieve this,
we rely on some definitions and results from Section 5.1. Recalling that for any pair of states
p, q ∈ Q the language Lp,q = {u ∈ Σ∗ | p u−→∗q} contains all the words that can lead from state
p to q in A, and that S = ⋃

p∈F LqI ,p × (Lp,p\{ε}) is a subset of decompositions of ultimately
periodic words in Lω(A) that satisfies Equivalence (††) (as per Lemma 3), we proceed to
derive Tfinite as a subset of S. To do this, for each p ∈ F we fix a basis Up for LqI ,p w.r.t. 6, a
basis Wp for LqI ,p w.r.t. 6−1, and a basis V w

p for Lp,p\{ε} w.r.t. 4w for every w ∈ Wp. In
turn we define Tfinite as follows.

Tfinite = ⋃
p∈F

{
(u, v) ∈ Σ∗ × Σ+ | u ∈ Up, v ∈ V w

p for some w ∈ Wp with u 6 w
}
. (‡)

Note that the quasiorder 4w used to prune the periods of Lp,p depends on a maximal w.r.t.
6 prefix w of LqI ,p since w belongs to the basis Wp for 6−1. The correctness argument for
choosing 4w essentially relies on the FORQ constraint as the proof of Proposition 12 shows.
In Section 6.3 (Example 18) we will show, that when w is not “maximal” the quasiorder 4w
yields a set Tfinite for which (††) does not hold.

Next we prove that Tfinite satisfies the equivalence (††). The proof crucially relies on the
preservation property of the FORQ which allows discarding candidate counterexamples
without loosing completeness, that is, if inclusion does not hold a counterexample will be
returned.

Proposition 12. The subset Tfinite satisfies Equivalence (††).

Proof. We show that uvω ∈ Lω(A) ⇐⇒ ∃(u′, v′) ∈ Tfinite, uvω = u′v′ω. The direction ⇐
holds because Tfinite is a subset of decompositions of ultimately periodic words of Lω(A). For
the direction ⇒ we first show that for every (u, v) ∈ S = ⋃

p∈F LqI ,p × (Lp,p\{ε}) there is
(u′, v′) ∈ S such that u′v′ 6 v′ and u′v′ω = uvω. Let u ∈ LqI ,p and v ∈ Lp,p. If uv 6 u then
we are done for otherwise consider the sequence {uvi}i∈N. Since 6−1 is a well-quasiorder,
there exists x, y ∈ N such that x < y and uvx 6−1 uvy (viz. uvy 6 uvx). Therefore we
have (uvx)(vy−x)ω = uvω, (uvx) ∈ LqI ,p, (vy−x) ∈ Lp,p, and (uvx)(vy−x) 6 (uvx). For every
uvω ∈ Lω(A) there is (u′, v′) ∈ S such that uvω = u′v′ω (Lemma 3) and by previously we
can assume that u′v′ 6 u′. By definition of bases there are u0 ∈ Up, w0 ∈ Wp and v0 ∈ V w0

p

for some p ∈ F such that u0 6 u′ 6 w0 and v0 4w0 v
′. Since u′ 6 w0, the FORQ constraint

shows that 4w0 ⊆ 4u′ which, in turn, implies that v0 4u v′ holds. Finally, we deduce from
u0v

ω
0 ∈M , u0 6 u′, v0 4u v′, u′v′ 6 u′ and the M -preservation of the FORQ that u′v′ω ∈M .

Thus, uvω ∈M .

46

Chapter 6. FORQ-BASED INCLUSION

6.2 The FORQ of a BA
In this section we derive a FORQ from a BA B = (Q̂, q̂I , δ̂, F̂) such that it is a Lω(B)-suitable
FORQ. For X ⊆ Q̂ and v ∈ Σ∗ we define CtxB(X, v) , {(q, q′, k) | q ∈ X, q v−→∗q′, (k = > =⇒
q

v−→F
∗q′)}. A “context” (q, q′, k) returned by CtxB, consists in a source state q ∈ Q, a sink

state q′ ∈ Q and a boolean k ∈ {>,⊥} that keeps track whether an accepting state is visited.
Note that, having ⊥ as last component of a context does not mean that no accepting state is
visited.

Definition 6.2.1 (FORQ of a BA). Given a BA B = (Q̂, q̂I , δ̂, F̂) we define the family of
quasiorders 〈6B, {4Bu}u∈Σ∗〉 where 6B is defined as in Definition 4.4.1 and for every u ∈ Σ∗
the quasiorder 4Bu is defined by: v 4Bu v′

4⇐⇒ CtxB(postB(u), v) ⊆ CtxB(postB(u), v′).

Note that for every u ∈ Σ∗ the quasiorder 4Bu is coarser than the quasiorder 4B used to prune
the periods in the algorithm of Chapter Section 5. Thus, the FORQ 〈6B, {4Bu}u∈Σ∗〉 yields
more pruning than the pair of quasiorders 6B,4B.

Lemma 5. Given a BA B, the pair 〈6B, {4Bu}u∈Σ∗〉 of Definition 6.2.1 is a FORQ.

Proof. Let B = (Q̂, q̂I , δ̂, F̂) be a BA. The proof of right monotonicity is similar to the
proof of Proposition 3. Next we prove that the FORQ constraint holds: u 6B u′ =⇒
4Bu′ ⊆ 4Bu . First, we observe that, for all Y ⊆ X ⊆ Q and all v, v′ ∈ Σ∗, we have that
CtxB(X, v) ⊆ CtxB(X, v′) =⇒ CtxB(Y, v) ⊆ CtxB(Y, v′). Consider u, u′ ∈ Σ∗ such that
u 6B u′ and v, v′ ∈ Σ∗ such that v 4Bu′ v′. Let X = postB(u) and X ′ = postB(u′), we have that
X ⊆ X ′ following u 6B u′. Next, we conclude from v 4Bu′ v

′ that CtxB(X ′, v) ⊆ CtxB(X ′, v′),
hence that CtxB(X, v) ⊆ CtxB(X, v′) by the above reasoning using X ⊆ X ′, and finally that
v 4Bu v

′.

(C)
i a b

(E)

qIstartstart q1 q2
a, b

a, b b

a, b

Figure 6.1: Büchi automata C and E over the alphabet Σ = {a, b}.

Example 15 (FORQ of a BA). Consider the BA E of Figure 6.1. We have postE(ε) = {qI};
postE(a) = postE(b) = {q1} and postE(u) = {q1, q2} for all u ∈ Σ∗ such that |u| ≥ 2. In
particular we conclude from u1 6E u2

4⇐⇒ postE(u1) ⊆ postE(u2) that a 6E aa, a 6E b and
b 6E a; ε and a are incomparable; and so are ε and aa. Since u ∈ Σ∗ 7→ CtxE(postE(u), ·) has
only three distinct outputs, the set {4Eu}u∈Σ∗ contains three distinct quasiorders.

1. v1 4Eε v2
4⇐⇒ CtxE({qI}, v1) ⊆ CtxE({qI}, v2) where

• CtxE({qI}, ε) = {(qI , qI ,⊥)}

• CtxE({qI}, a) = CtxE({qI}, b) = {(qI , q1,⊥)}

• CtxE({qI}, v) = {(qI , q1,⊥), (qI , q2,⊥), (qI , q2,>)} for all v ∈ Σ∗ such that |v| ≥ 2.

47

Kyveli Doveri

2. v1 4Ea v2 ⇐⇒ v1 4Eb v2
4⇐⇒ CtxE({q1}, v1) ⊆ CtxE({q1}, v2) where

• CtxE({q1}, ε) = {(q1, q1,⊥)}

• CtxE({q1}, v) = {(q1, q1,⊥), (q1, q2,⊥), (q1, q2,>)} for all v ∈ Σ+

3. v1 4Eu v2
4⇐⇒ CtxE({q1, q2}, v1) ⊆ CtxE({q1, q2}, v2) for all u ∈ Σ∗ such that |u| ≥ 2

where

• CtxE({q1, q2}, ε) = {(q1, q1,⊥), (q2, q2,⊥), (q2, q2,>)}

• CtxE({q1, q2}, v) = {(q1, q1,⊥), (q1, q2,⊥), (q1, q2,>)} for all v ∈ Σ+\{b}+

• CtxE({q1, q2}, v) = {(q1, q1,⊥), (q1, q2,⊥), (q1, q2,>), (q2,q2,⊥),(q2,q2,>)} for all v ∈
{b}+.

With the above definitions the reader is invited to check that the sets {ε, a} and {ε, b} are basis
for Σ∗ w.r.t. 6E ; the set {ε, aa} is a basis for Σ∗ w.r.t. 6E−1; the set {b} is a basis for Σ+

w.r.t. 4Eε as well as w.r.t. 4Ea ; and the set {a} is a basis for Σ+ w.r.t. 4Eaa. Also observe
that none of the above finite bases contains comparable words for the ordering thereof.

As prescribed in Section 6.1, we show that for every BA B its FORQ is L(B)-suitable.

Proposition 13. Given a BA B its FORQ is Lω(B)-suitable.

Proof. Let B = (Q̂, q̂I , δ̂, F̂) be a BA. Since Q is a finite set the quasiorder 6B, its converse
(6B)−1, and 4Bu for every u ∈ Σ∗ are all well-quasiorder. The proof of decidability is trivial
by Definition 6.1.2. For the preservation, given u0v0

ω ∈ Lω(B), we show that for all u ∈ Σ∗
and all v ∈ Σ+ such that uv 6B u and u0 6B u and v0 4Bu v then uvω ∈ Lω(B) holds. Let a
run π0 = qI

u0−→∗q0
v0−→∗q1

v0−→∗q2 . . . of B over u0v0
ω which is accepting. Stated equivalently,

we have q0 ∈ postB(u0) and (qi, qi+1, xi) ∈ CtxB(postB(u0v
i
0), v0) for every i ∈ N with the

additional constraint that xi = > holds infinitely often.

We will show that B has an accepting run over uvω by showing that q0 ∈ postB(u) holds;
(qi, qi+1, xi) ∈ CtxB(postB(uvi), v) holds for every i ∈ N; and xi = > holds infinitely of-
ten. Since u0 6B u and q0 ∈ postB(u0) we find that q0 ∈ postB(u) by definition of
6B. Next we show the remaining constraints by induction. The induction hypothesis
states that for all 0 ≤ n we have (qn, qn+1, xn) ∈ CtxB(postB(uvn), v). For the base
case (n = 0) we have to show that (q0, q1, x0) ∈ CtxB(postB(u), v). We conclude from
(q0, q1, x0) ∈ CtxB(postB(u), v0), v0 4Bu v and the definition of 4Bu that CtxB(postB(u), v0) ⊆
CtxB(postB(u), v) and finally that (q0, q1, x0) ∈ CtxB(postB(u), v). For the inductive case,
assume (qn, qn+1, xn) ∈ CtxB(postB(uvn), v). The definition of context shows that qn+1 ∈
postB(uvn+1). It takes an easy an induction to show that uvn 6B u for all n using
uv 6B u and right-monotonicity of 6B. We conclude from uvn+1 6B u, the definition of
6B and qn+1 ∈ postB(uvn+1) that qn+1 ∈ postB(u) also holds, hence that (qn+1, qn+2, xn+1) ∈
CtxB(postB(u), v0) following the definition of contexts and that of π0. Next, we find that
(qn+1, qn+2, xn+1) ∈ CtxB(postB(u), v) following a reasoning analogous to the base case, this
time starting with (qn+1, qn+2, xn+1) ∈ CtxB(postB(u), v0). Finally, qn+1 ∈ postB(uvn+1) im-
plies that (qn+1, qn+2, xn+1) ∈ CtxB(postB(uvn+1), v). We have thus shown that q0 ∈ postB(u)
and (qi, qi+1, xi) ∈ CtxB(postB(uvi), v) for every i ∈ N with the additional constraint that

48

Chapter 6. FORQ-BASED INCLUSION

xi = > holds infinitely often and we are done.

6.3 FORQ-based Algorithm
In this section we give an effective computation for the bases defining Tfinite, hence our
FORQ-based algorithm, Algorithm 5, deciding whether L(A) ⊆M holds.

Given a M -suitable FORQ 〈6, {4u}u∈Σ∗〉 Algorithm 5 iteratively computes the finite bases
defining Tfinite by using the fixpoint characterization S = ⋃

p∈F (lfp fA)p × (lfp rA,p)p defined
in Section 5.2.1. The algorithm computes the Kleene iterates of fA in lines 1 and 2 until
they reach a finite basis for lfp fA w.r.t. 6|Q| and (6−1)|Q| resp.1 For every word w in the
finite basis Wp = (fAk(~∅))p for LqI ,p w.r.t. 6−1 it similarly computes in line 5 a finite basis
for lfp rA,p w.r.t. 4|Q|w . The convergence of the Kleene iterates to a finite basis is checked
by comparing two consecutive iterates for the quasiorder vn where n ∈ {6,6−1,4w} as
explained in Section 5.2.2. Finally, the algorithm checks in lines 6–7 whether every ultimately
periodic word from Tfinite belongs to M .

Algorithm 5: Algorithm for deciding Lω(A) ⊆M

Data: BA A = (Q, qI , δ, F).
Data: M -suitable FORQ 〈6, {4u}u∈Σ∗〉.
Data: Procedure deciding uvω ∈M given (u, v).

1 Compute fAm(~∅) with least m s.t. fAm+1(~∅) v|Q|6 fAm(~∅);
2 Compute fAk(~∅) with least k s.t. fAk+1(~∅) v|Q|6−1 fAk(~∅);
3 foreach p ∈ F do
4 foreach w ∈ (fAk(~∅))p do
5 Compute rA,pm

′(~∅) with least m′ s.t. rA,pm
′+1(~∅) v|Q|4w

rA,pm
′(~∅);

6 foreach u ∈ (fAm(~∅))p, v ∈ (rA,pm
′(~∅))p such that u 6 w do

7 if uvω /∈M then return false;
8 return true;

Theorem 10. Given the required inputs, Algorithm 5 decides the inclusion problem Lω(A) ⊆
M .

Proof. The algorithm computes a finite representation Tfinite of Lω(A) as in (‡). Hence, by
Equation (††) we have

Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ Tfinite, uvω ∈M .

The following two examples show a run of Algorithm 5 instantiated with the FORQ of
Definition 6.2.1. The second one applies the antichain optimization.

1We lift the notion of basis to Q-dimensional vectors componentwise.

49

Kyveli Doveri

Example 16 (Run of Algorithm 5). We consider the BAs of Figure 6.1 for which we want to
check whether L(C) ⊆ L(E) holds using the FORQ of E . We have fC(∅) = {ε}, fC2(∅) = {ε, a, b}
and fC3(∅) = {ε, a, b, aa, ab, ba, bb} (see Example 12). Thus, from Example 15 we deduce that
fC3(∅) v6E fC2(∅) so that a finite basis of lfp fC w.r.t. 6E is achieved by fC2(∅). Similarly, it
is routine to check that fC3(∅) is a finite basis of lfp fC w.r.t. (6E)−1. Hence, the subset of
words fC3(∅) induces the three distinct quasiorders 4Eε , 4Ea and 4Eaa defined in Example 15.
Then, rC(∅) is a finite basis of lfp rC w.r.t. any of these three quasiorders. Finally, we find
Tfinite = fC2(∅)×rC(∅), (a, a) ∈ Tfinite and aω /∈ L(E). By checking membership of the ultimately
periodic word aω from T into L(E) we thus have shown that L(C) ⊆ L(E) does not hold.

Example 17 (Antichains Everywhere). We continue from Example 16. Since a and b are
equivalent w.r.t. 6E we can keep the antichains {ε, a} and {ε, aa} w.r.t. 6E and (6E)−1

instead of fC2(∅) and fC3(∅). Similarly, we can keep the antichain {a} w.r.t. 4Eu for u ∈ {ε, aa}
instead of rC(∅). We then perform the membership querries on the set Tfinite = {ε, a} × {a}.

6.3.1 Why a basis w.r.t. 6−1 is computed?
Taking periods in a basis w.r.t. 4w where w ∈ Σ∗ is picked to be a maximal w.r.t. 6 word of
LqI ,p may seem unnatural. In fact, the language preservation property of FORQ even suggests
that an algorithm without computing a basis w.r.t. 6−1 may exist. Here, we show that taking
periods in a basis w.r.t. 4u where u ∈ Σ∗ is picked in a basis w.r.t. 6 is not correct. More
precisely, redefining Tfinite as

T̃ = ⋃
p∈F

{
(u, v) ∈ Σ∗ × Σ+ | u ∈ Up, v ∈ V u

p

}
,

where for all p ∈ P , Up is a basis for LqI ,p w.r.t. 6 and V u
p is a basis for Lp,p\{ε} w.r.t. 4u,

leads to an incorrect algorithm because the equivalence (††) given by Lω(A) ⊆ M ⇐⇒
∀(u, v) ∈ T̃ , uvω ∈M no longer holds as shown in the below example.

Example 18. Consider the BA given by Figure 6.1. We have that L(C) * L(E) and, in
Example 17, we have argued that Tfinite = {ε, a}×{a} contains the ultimately periodic word aω
which is a counterexample to inclusion. From Example 15 we can set Ui = {ε, a} since {ε, a}
is a basis for Li,i = {a, b}∗, and V a

i = V ε
i = {b} since {b} is a basis for Li,i\{ε} = {a, b}+

w.r.t. 4a and 4ε. We conclude from the above definition that T̃ = {(ε, b), (a, b)}, hence that
∀(u, v) ∈ T̃ , uvω ∈ L(B) which contradicts (††) since L(C) * L(E).

We conclude this section with the algorithmic complexity of Algorithm 5.

6.3.2 Complexity
Next, we establish an upper bound on the runtime of Algorithm 5 when the input FORQ is
〈6B, {4Bu}u∈Σ∗〉 induced by a BA B. Let n and n̂ be respectively the number of states of A
and B. By analogue arguments as in Proposition 5 we find that |Σ| · n2 · 2O(n̂2) is an upper
bound on the runtime of lines 1, 2 and 5. Next, we derive an upper bound on the number of
membership queries performed at line 7. The number of iterations of the loops of lines 3, 4, 5
and 6 is n, 2n̂, n · 2(2n̂2) and 2(2n̂2) · 2n̂, respectively. Since all loops are nested, we multiply
these bounds to end up with n2 · 2O(n̂2) as an upper bound on the number of membership

50

Chapter 6. FORQ-BASED INCLUSION

queries. The runtime for each ultimately periodic word membership query (with a prefix, a
period and B as input) is upper bounded by an expression polynomial in the size n̂ of B, 2n̂
for the length of the prefix and 2(2n̂2) for the length of the period.

6.4 Discussions
This section provides informations that we consider of interest although not essential for the
correctness of the FORQ algorithm or its evaluation.

6.4.1 Origin of FORQ
Our definition of FORQ and their suitability property (in particular the language preservation)
are directly inspired from the definitions related to families of right congruences introduced
by Maler and Staiger in 1993 [59] (revised in 2008 [61]). We now explain how our definition
of FORQ generalizes and relaxes previous definitions [61, Definitions 5 and 6].

First we explain why the FORQ constraint does not appear in the setting of families of right
congruences. In the context of congruences, relations are symmetric and thus, the FORQ
constraint reduces to u 6 u′ ⇒ 4u′ = 4u. Therefore the FORQ constraint trivially holds
if the set {4u}u∈Σ∗ is quotiented by the congruence relation 6, which is the case in the
definition [60, Definition 5].

Second, we point that the condition v 4u v′ ⇒ uv 6 uv′ which appears in the definition for
right families of congruences [61, Definition 5] is not needed in our setting. Nevertheless, this
condition enables an improvement of the FORQ-based algorithm that we describe next.

6.4.2 Less membership queries
We put forward a property of the FORQ of a BA allowing us to reduce the number of
membership queries performed by Algorithm 5. Hereafter, we refer to the picky constraint as
the property of a FORQ stating v 4u v′ ⇒ uv 6 uv′ where u, v, v′ ∈ Σ∗. We first show how
thanks to the picky constraint we can reduce the number of candidate counterexamples in
the FORQ-based algorithm and then, we show that the FORQ of a BA of Definition 6.2.1
satisfies the picky constraint.

In Algorithm 5, periods are taken in a basis w.r.t. 4w where w ∈ Σ∗ belongs to a finite basis
w.r.t. 6−1. The only restriction on w is that of being comparable to the stem u, as ensured by
the test at line 6. The following lemma formalizes the fact that we could consider a stronger
restriction.

Lemma 6. Let 6 be a quasiorder over Σ∗ such that 6−1 is a right-monotonic well-quasiorder.
Let S ⊆ Σ∗ and S ′ be a basis for S w.r.t. 6−1 such that S ′ is an antichain. For all u ∈ Σ∗
and v ∈ Σ+ such that u ∈ S and {wv | w ∈ S} ⊆ S, there exists ẘ ∈ S ′ such that uvi 6 ẘ
and ẘvj 6 ẘ for some i, j ∈ N \ {0}.

Proof. Since 6−1 is a well-quasiorder, S admits a finite basis S ′ = {ẘ1, . . . , ẘk} that is an
antichain w.r.t. 6−1. Let u ∈ Σ∗ and v ∈ Σ+ such that u ∈ S and {wv | w ∈ S} ⊆ S. For

51

Kyveli Doveri

all i ∈ {1, . . . , k}, we have ẘiv ∈ S by hypothesis, and thus there exists j ∈ {1, . . . , k} such
that ẘj 6−1 ẘiv. Hence, the function f : {1, . . . , k} 7→ {1, . . . , k} defined by f : i 7→ min{j |
ẘj 6−1 ẘiv} is well defined and we have ẘf(i) 6−1 ẘiv for all i ∈ {1, . . . , k}.

Knowing u ∈ S, we exhibit some l ∈ {1, . . . , k} satisfying ẘl 6−1 u. Consider the infinite
sequence {fn(l)}n∈N where f 0(l) = l and fn+1(l) = f(fn(l)). We prove by induction that
ẘf i+j(l) 6−1 ẘf i(l)v

j for all i, j ∈ N. If j = 0, then ẘf i(l) 6−1 ẘf i(l) holds for all i ∈ N by
reflexivity. Assume that j > 0 and ẘf i+j(l) 6−1 ẘf i(l)v

j. The right-monotonicity of 6−1

implies ẘf i+j(l)v 6−1 ẘf i(l)v
j+1. By construction ẘf i+j+1(l) 6−1 ẘf i+j(l)v. Hence ẘf i+j+1(l) 6−1

ẘf i(l)v
j+1 holds.

As a consequence of the finiteness of the set {fn(l) | n ∈ N6=0}, there exists x, y ∈ N6=0 such
that 0 < x < y and fx(l) = f y(l). Thanks to the property previously proved, the following
holds.

• ẘfy(l) 6−1 ẘfx(l)v
y−x by taking i = x and j = y − x.

• ẘfx(l) 6−1 ẘlv
x by taking i = 0 and j = x.

Let ẘ = ẘfx(l) = ẘfy(l). We have that ẘ 6−1 ẘvy−x and ẘ 6−1 ẘlv
x. In addition ẘl 6−1 u

implies ẘ 6−1 uvx by right-monotonicity and transitivity of 6−1.

Next, we show that the equivalence (††) holds but this time for an alternative definition
of Tfinite we provide next. Given a M -suitable FORQ 〈6, {4u}u∈Σ∗〉 that satisfies the picky
constraint let

T̂ = {(u, v) ∈ Tfinite | ∃s ∈ F : u ∈ Us, v ∈ V w
s for some w ∈ Ws with u 6 w,wv 6 w}

where for all s ∈ F we fixed a basis Up for LqI ,p w.r.t. 6, a basis Wp for LqI ,p w.r.t. 6−1, and
a basis V w

p for Lp,p\{ε} w.r.t. 4w for every w ∈ Wp.

Proposition 14. Given a M-suitable FORQ that satisfies the picky constraint we have
Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ T̂ , uvω ∈M .

Proof. The direction ⇒ of the equivalence holds because T̂ is a subset of decompositions
of ultimately periodic words of Lω(A). For the converse direction assume that ∀(u, v) ∈
T̂ , uvω ∈ M . Let uvω ∈ Lω(A) and Tfinite be such that the basis Ws is an antichain. Since
Tfinite is a representation of Lω(A) we can assume that (u, v) ∈ Tfinite. By definition of Tfinite
there is s ∈ F such that u ∈ LqI ,s and v ∈ Ls,s. Thus, in the context of Lemma 6, taking
S = LqI ,s fulfills the requirements u ∈ S and {wv | w ∈ S} ⊆ S. We can thus apply the lemma
with S = LqI ,s and S ′ = Ws to ensure the existence of some w0 ∈ Ws satisfying uvi 6 w0 and
w0v

j 6 w0 for some i, j ∈ N \ {0}. Since uvi ∈ LqI ,s and vj ∈ Ls,s we find that there exist
u0 ∈ Us and v0 ∈ V w0

s such that u0 6 uvi and v0 4w0 v
j by definition of basis. Using the

picky constraint we conclude from v0 4w0 v
j that w0v0 6 w0v

j, and finally from w0v
j 6 w0

that w0v0 6 w0 by transitivity. By definition (u0, v0) ∈ T̂ , thus by assumption u0v
ω
0 ∈ M

From uvi 6 w0, v0 4w0 v
j and the FORQ constraint we deduce that v0 4uvi vj . Finally, from

u0 6 uvi, v0 4uvi vj and u0v
ω
0 ∈M we deduce by preservation that uvω ∈M .

To summarize, if the considered FORQ fulfills the picky constraint then Algorithm 5 remains

52

Chapter 6. FORQ-BASED INCLUSION

correct when discarding the periods v at line 6 such that wv 66 w. Observe that discarding
one period v possibly means skipping several membership queries (u1v

ω, u2v
ω, . . .). As proved

below, the picky constraint holds for the FORQ of all BA.

Lemma 7. Given a BA B, its FORQ 〈6B, {4Bu}u∈Σ∗〉 satisfies the picky constraint.

Proof. We show that for every u ∈ Σ∗ and every v, v′ ∈ Σ+ if v 4Bu v′ then uv 6B uv′.
For every q′ ∈ postB(uv), there exists q ∈ postB(u) such that (q, q′) ∈ ctxB(v). Hence
(q, q′,⊥) ∈ CtxB(postB(u), v). In fact (q, q′,⊥) ∈ CtxB(postB(u), v′) holds as well since v 4Bu v′.
We deduce from the definition of CtxB that q′ ∈ postB(uv′). Thus postB(uv) ⊆ postB(uv′) i.e.,
uv 6B uv′.

In the following section, we will introduce our tool, called FORKLIFT, which implements
Algorithm 5 instantiated by the FORQ of Definition 6.2.1. We emphasize that the optimization
we discussed earlier, which reduces the number of membership queries, was not included in
our experimental evaluation. This omission is motivated by two considerations: firstly, the
simplification it brings to the proof of correctness, and secondly, FORKLIFT already scales
up well without this specific optimization. We leave for future work the precise effect of such
optimization.

6.5 Implementation and experiments
In this section, we carry out an evaluation of the FORQ-based framework introduced in
this chapter, and we also compare it to the framework presented in Chapter 5 (specifically,
Algorithm 4), where only two quasiorders (one for prefixes and another for periods) are
employed to eliminate potential counterexamples.

We have implemented Algorithm 4 in a tool named BAIT [29]. It’s worth noting that
Algorithm 4 exclusively operates on automata states and doesn’t handle or store words
directly.

For the FORQ-based approach, we have similarly implemented a "state-based" variant of
Algorithm 5 using the FORQ of the BA B as defined in Definition 6.2.1. More precisely,
our implementation does not recompute the associated set of postB nor CtxB for the newly
computed words from scratch. For every prefix u ∈ Σ∗ and every letter a ∈ Σ, the set of
states postB(ua) is computed from postB(u) thanks to the equality 4.1 essentially stating that
postB can be computed inductively. Analogously, for every period v ∈ Σ+, every X ⊆ Q̂
and every a ∈ Σ, the set of contexts CtxB(X, va) is computed from CtxB(X, v) thanks to the
following equality:

CtxB(X, va) =
{

(q0, q, k) ∈ Q2 × {⊥,>}
∣∣∣∣ (q0, q

′, k′) ∈ CtxB(X, v), : (q′, q) ∈ ctxB(a)
(k = ⊥ ∨ k′ = > ∨ (q′, q) ∈ ctxB~(a))

}
.

Intuitively CtxB can be computed inductively as we did for postB. The first part of the
condition defines how new context are obtained by appending a transition to the right of
an existing context while the second part defines the bit of information keeping record of
whether an accepting state was visited.

53

Kyveli Doveri

Both FORKLIFT and BAIT incorporate the antichain optimization, which prunes subsumed
words, ensuring that each computed set contains the fewest possible words.

Furthermore, our implementations are naïve prototypes, consisting of less than 1,000 lines of
Java code, with our primary objective in designing these tools being the preservation of code
simplicity.

6.5.1 Experimental Evaluation
Benchmarks. Our evaluation uses benchmarks stemming from various application domains
including benchmarks from theorem proving and software verification. In this section, a
benchmark means an ordered pair of BA such that the “left”/“right” BA refer, resp., to the
automata on the left/right of the inclusion sign. The BA of the Pecan [68] benchmarks encode
sets of solutions of predicates, hence a logical implication between predicates reduces to a
language inclusion problem between BA. The benchmarks correspond to theorems of type
∀x,∃y, P (x) =⇒ Q(y) about Sturmian words [46]. We collected 60 benchmarks from Pecan
for which inclusion holds, where the BA have alphabets of up to 256 symbols and have up to
21 395 states.

The second collection of benchmarks stems from software verification. The Ultimate Automizer
(UA) [44, 43] benchmarks encode termination problems for programs where the left BA models
a program and the right BA its termination proof. Overall, we collected 600 benchmarks
from UA for which inclusion holds for all but one benchmark. The BA have alphabets of up
to 13 173 symbols and are as large as 6 972 states.

The RABIT benchmarks are BA modeling mutual exclusion algorithms [3], where in each
benchmark one BA is the result of translating a set of guarded commands defining the protocol
while the other BA translates a modified set of guarded commands, typically obtained by
randomly weakening or strengthening one guard. The resulting BA are on a binary alphabet
and are as large as 7 963 states. Inclusion holds for 9 out of the 14 benchmarks.

All the benchmarks are publicly available on GitHub [25]. We used all the benchmarks we
collected, that is, we discarded no benchmarks.

Tools. We compared FORKLIFT [28] and BAIT [29] with the following tools: SPOT 2.10.3,
GOAL (20200822), RABIT 2.5.0, and ROLL 1.0.

SPOT [33, 32] decides inclusion problems by complementing the “right” BA via determiniza-
tion to parity automata with some additional optimizations including simulation-based
optimizations. It is invoked through the command line tool autfilt with the option
–included-in. It is worth pointing out that SPOT works with symbolic alphabets
where symbols are encoded using Boolean propositions, and sets of symbols are repre-
sented and processed using OBDDs. SPOT is written in C++ and its code is publicly
available [74].

GOAL [77] contains several language inclusion checkers available with multiple options.
We used the Piterman algorithm using the options containment -m piterman with
and without the additional options -sim -pre. In our plots GOAL is the invocation

54

Chapter 6. FORQ-BASED INCLUSION

with the additional options -sim -pre which compute and use simulation relations to
further improve performance while GOAL− is the one without the additional options.
Inclusion is checked by constructing on-the-fly the intersection of the “left” BA and
the complement of the “right” BA which is itself built on-the-fly by the Piterman
construction [66]. The Piterman check was deemed the “best effort” (cf. [18, Section 9.1]
and [78]) among the inclusion checkers provided in GOAL. GOAL is written in Java
and the source code of the release we used is not publicly available [41].

RABIT [18] performs the following operations to check inclusion: (1) Removing dead states
and minimizing the automata with simulation-based techniques, thus yielding a smaller
instance; (2) Witnessing inclusion by simulation already during the minimization phase;
(3) Using a Ramsey-based method with antichain heuristics to witness inclusion or
non-inclusion. The antichain heuristics of Step (3) uses a unique quasiorder leverag-
ing simulation relations to discard candidate counterexamples. In our experiments
we ran RABIT with options -fast -jf which RABIT states as providing the “best
performance”. RABIT is written in Java and is publicly available [71].

ROLL [56, 55] contains an inclusion checker that does a preprocessing analogous to that of
RABIT and then relies on automata learning and word sampling techniques to decide
inclusion. ROLL is written in Java and is publicly available [72].

As far as we can tell all the above implementations are sequential except for RABIT which,
using the -jf option, performs some computations in a separate thread.

Experimental Setup. We ran our experiments on a server with 24GB of RAM, 2 Xeon
E5640 2.6 GHz CPUs and Debian Stretch 64-bit. We used openJDK 11.0.12 2021-07-20
when compiling Java code and ran the JVM with default options. For RABIT, BAIT and
FORKLIFT the execution time is computed using timers internal to their implementations.
For ROLL, GOAL and SPOT the execution time is given by the “real” value of the time(1)
command. We preprocessed the benchmarks passed to FORKLIFT and BAIT with a
reduction of the set of final states of the “left” BA that does not alter the language it
recognizes. This preprocessing aims to minimize the number of iterations of the loop at line 3
of Algorithm 5 over the set of final states. It is carried out by GOAL using the acc -min
command. Internally, GOAL uses a polynomial time algorithm that relies on computing
strongly connected components. The time taken by this preprocessing is negligible.

Plots. We use survival plots for displaying our experimental results in Figure 7.1. Let us
recall how to obtain them for a family of benchmarks {pi}ni=1: (1) run the tool on each
benchmark pi and store its runtime ti; (2) sort the ti’s in increasing order and discard
pairs corresponding to abnormal program termination like time out or memory out; (3) plot
the points (t1, 1), (t1 + t2, 2),. . . , and in general (∑k

i=1 ti, k); (4) repeat for each tool under
evaluation.

Survival plots are effective at comparing how tools scale up on benchmarks: the further right
and the flatter a plot goes, the better the tool thereof scales up. Also the closer to the x-axis
a plot is, the less time the tool needs to solve the benchmarks.

55

Kyveli Doveri

Analysis. It is clear from Figure 6.2a and 6.2b that FORKLIFT scales up best on both
the Pecan and UA benchmarks. FORKLIFT’s scalability is particularly evident on the
PECAN benchmarks of Figure 6.2a where its curve is the flattest and no other tool finishes
on all benchmarks. Note that, in Figure 6.2b, the plot for SPOT is missing because we did
not succeed into translating the UA benchmarks in the input format of SPOT. On the UA
benchmarks, FORKLIFT, BAIT and GOAL scale up well and we expect SPOT to scale
up at least equally well. On the other hand, RABIT and ROLL scaled up poorly on these
benchmarks.

On the RABIT benchmarks at Figure 6.2c both FORKLIFT and SPOT terminate 13 out of
14 times; BAIT terminates 9 out of 14 times; and GOAL, ROLL and RABIT terminate all
the times. We claim that the RABIT benchmarks can all be solved efficiently by leveraging
simulation relations which FORKLIFT does not use let alone compute. Next, we justify
this claim. First observe at Figure 6.2c how GOAL is doing noticeably better than GOAL−
while we have the opposite situation for the Pecan benchmarks Figure 6.2a and no noticeable
difference for the UA benchmarks Figure 6.2b. Furthermore observe how ROLL and RABIT,
which both leverage simulation relations in one way or another, scale up well on the RABIT
benchmarks but scale up poorly on the PECAN and UA benchmarks.

The reduced RABIT benchmarks at Figure 6.2d are obtained by pre-processing every BA
of every RABIT benchmark with the simulation-based reduction operation of SPOT given
by autfilt –high –ba. This preprocessing reduces the state space of the BA by more than
90% in some cases. The reduction significantly improves how FORKLIFT scales up (it now
terminates on all benchmarks) while it has less impact on RABIT, ROLL and SPOT which,
as we said above, already leverage simulation relation internally. It is also worth noting that
GOAL has a regression (from 14/14 before the reduction to 13/14).

Overall FORKLIFT, even though it is a prototype implementation, is the tool that returns
most often (673/674). Its unique failure disappears after a preprocessing using simulation
relations of the two BA. The FORKLIFT curve for the Pecan benchmarks shows FORKLIFT
scales up best.

Our conclusion from the empirical evaluation is that, in practice FORKLIFT is competitive
compared to the state-of-the-art in terms of scalability. Moreover the behavior of the FORQ-
based algorithm in practice is far from its worst case exponential runtime.

56

Chapter 6. FORQ-BASED INCLUSION

41 43 52 54 57 58 59 60

103

104

105

106

107

108

instances

tim
e
(m

s)

GOAL GOAL−
RABIT BAIT
SPOT FORKLIFT
ROLL

(a) Benchmarks from Pecan

551 561 564 600

105

106

107

108

instances

tim
e
(m

s)

GOAL− GOAL
RABIT BAIT
ROLL FORKLIFT

(b) Benchmarks from Ultimate Automizer

57

Kyveli Doveri

7 9 12 13 14
102

103

104

105

106

107

108

instances

tim
e
(m

s)

RABIT GOAL− GOAL
SPOT BAIT ROLL

FORKLIFT

(c) Benchmarks from RABIT

7 13 14
101

102

103

104

105

106

107

108

instances

tim
e
(m

s)

RABIT GOAL− GOAL
SPOT BAIT ROLL

FORKLIFT

(d) Benchmarks from RABIT (reduced)

Figure 6.2: Survival plot with a logarithmic y axis and linear x axis. Each benchmark has a
timeout value of 12h. Parts of the plots left out for clarity. A point is plotted for abscissa
value x and tool r iff r returns with an answer for x benchmarks. All the failures of BAIT
and the one of FORKLIFT are memory out.

58

Chapter 7

INCLUSION FOR VISIBLY
PUSHDOWN LANGUAGES

In this chapter we define algorithms for the inclusion problem between two visibly pushdown
languages of infinite words.

7.1 Overview
We solve the inclusion problem Lω(A) ⊆ M where, A = (Q, qI ,Γ, δ, F) is a VPA and M a
ω-VPL, by identifying a finite subset Sfinite of ultimately periodic words of Lω(A) such that

Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ Sfinite, uv
ω ∈M . (†)

We select Sfinite as a basis w.r.t. a pair of quasiorders. A difference with the framework of
Chapter 5 is that now, the subset Sfinite only contains a specific type of decompositions of
ultimately periodic words called legitimate decompositions. The set of legitimate decomposi-
tions is given by

Ld , C× C ∪ Uc × R ,

where, C is the set of finite words where all call positions are matched, R is the set of finite
words where all return positions are matched and, Uc is the set of finite words with at least
one unmatched call position (see Definition 3.6.1).

The Equivalence (†) yields a correct algorithm because of the following.

1. Ultimately periodic words are sufficient to solve the inclusion problem between ω-VPL,
as shown by the following theorem1

Theorem 11. Let L,M ⊆ Σω be ω-VPL. Then, L ⊆M iff ∀uvω ∈ L, uvω ∈M .

2. We can identify a sufficient subset Sfinite of legitimate decompositions of L(A) that
admits a least fixed point characterization.

1Theorem 11 can be easily obtained by adapting the proof of Fact 1 in [17].

59

Kyveli Doveri

3. The language M admits an M -suitable pair of quasiorders i.e., a pair of decidable,
M -preserving, well-quasiorders that satisfy monotonicity conditions aligned with the
fixpoint functions. In the VPL setting, we restrict the definition of M -preservation
to the legitimate decompositions as follows. A pair 6,4 of quasiorders on Σ∗ is said
to be M -preserving if for all (u, v), (u′, v′) ∈ Ld such that (u, v), (u′, v′) ∈ C × C or
(u, v), (u′, v′) ∈ Uc × R,if uvω ∈M,u 6 u′ and v 4 v′ then u′v′ω ∈M .

7.2 Reduction to a Finite Basis
In this section we show how to reduce the inclusion problem Lω(A) ⊆ M to a finite basis
w.r.t. a pair of quasiorders.

7.2.1 A Sufficient Subset of Legitimate Decompositions
Our first step is to reduce the inclusion check to a subset of ultimately periodic words of
Lω(A) given by legitimate decompositions. As shown next, every ultimately periodic word
admits a legitimate decomposition.

Proposition 15. Let stω ∈ Σω. There exists (u, v) ∈ Ld such that stω = uvω.

Proof. Let stω ∈ Σω be an ultimately periodic word. We distinguish two cases: all call
positions of stω are matched, or at least one call position is unmatched.

• Assume that all call positions of stω are matched. If s ∈ Uc, then there must be some
finite prefix t′ of tω such that st′ ∈ C (or stω would have an unmatched call position).
Hence, there are t′, t′′ ∈ Σ∗ such that st′ ∈ C, t′t′′ = tn for some n ∈ N and stω = st′t′′tω.
Let t = t0 . . . tk ∈ Σ∗. Then t′ = tn

′
t0 · · · tm and t′′ = tm+1 · · · tktn

′′ for some m ∈ [0, k]
and n′, n′′ ∈ N such that n = n′ + n′′ + 1. Hence, for x = tm+1 · · · tkt0 · · · tm we have
that stω = st′xω. If xω admits a decomposition uvω with u, v ∈ C, so does stω, since
stω = st′uvω and st′u ∈ C. Next we show that xω admits such a decomposition. If
x ∈ C then we are done. Otherwise let xω , x0x1 · · · and let n ∈ [0, k] be the first
unmatched call position in x. Since xω is a suffix of stω all its call positions are
matched. Thus, there is j ∈ [1, n − 1] such that n yxω k + j. Since n is the first
unmatched call position in x we have s′ , x0 · · ·xn−1 ∈ C and by the definition of yxω

we deduce that w , xn · · ·xk+j ∈ W. Since xj+1 · · · xn−1 is a suffix of s′ ∈ C we also have
xj+1 · · ·xn−1 ∈ C. Thus, wxj+1 · · ·xn−1 ∈ C and xω = s′(wxj+1 · · · xn−1)ω is the desired
decomposition.

• Assume that stω at least one call position j which is unmatched. We can assume that
j < |s|, otherwise we take s′ , stn for some n such that j < |stn| and consider the
decomposition s′tω instead. The call position j is also unmatched in s, hence, s ∈ Uc.
We can assume that j is the last unmatched call position in s. Assume that t /∈ R and let
k ∈ [0, |t| − 1] be the first unmatched return position in t. We have that j ystω |s|+ k.
This is a contradiction since the call position j is unmatched in stω. Hence, t ∈ R.

60

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

As a consequence of Theorem 11 and Proposition 15, we obtain the following theorem, stating
that the legitimate decompositions are sufficient for the inclusion problem between ω-VPL.

Theorem 12. Let L,M ⊆ Σω be ω-VPL. Then, L ⊆ M iff ∀(u, v) ∈ Ld, uvω ∈ L =⇒
uvω ∈M .

We now leverage the relations `∗ and `~ of A to characterize the legitimate decompositions
of the ultimately periodic words in Lω(A). For each pair p, q ∈ Q of states of A: Lp,q , {u ∈
Σ∗ | ∃w ∈ Γ∗, (p,⊥) `∗u (q, w)} and L~p,q , {u ∈ Σ+ | ∃w ∈ Γ∗, (p,⊥) `~u (q, w)}. In turn,
define the following subset of Ld:

S ,
⋃
p∈Q LqI ,p|C × L

~
p,p|C ∪ LqI ,p|Uc

× L~p,p|R .

Here, L|K is defined as L ∩K to emphasize that L is restricted to K.

Example 19. Consider the VPA A and B depicted in Fig. 3.2. We have Lω(A) = Rω,
S = (W× W\{ε}) ∪ (R\C× R\{ε}) and Lω(B) = ((W\{ε})r)ω.

The subset S is sufficient for the inclusion problem Lω(A) ⊆M as shown next.

Proposition 16. Lω(A) ⊆M ⇐⇒ ∀(u, v) ∈ S, uvω ∈M .

Proof. By Theorem 12 it suffices to show that uvω ∈ Lω(A) ⇐⇒ ∃(u′, v′) ∈ S, uvω = u′v′ω.

⇒: Let uvω ∈ Lω(A). By Proposition 15 we can assume that (u, v) ∈ Ld.

• If (u, v) ∈ C× C then an accepting run of A on uvω can be factored as

(qI ,⊥) `∗u (q0,⊥) `∗v (q1,⊥) `∗v · · ·

and there is p ∈ Q such that qm = p for infinitely many m ∈ N. Since this run passes
from final states infinitely often, there are m, k ∈ N such that (qI ,⊥) `∗uvm (p,⊥) and
(p,⊥) `~v

k

(p,⊥). For u′ , uvm and v′ , vk, we have that (u′, v′) ∈ LqI ,p|C × L
~
p,p|C.

• If (u, v) ∈ Uc × R then an accepting run of A on uvω can be factored as

(qI ,⊥) `∗u (q0, w0) `∗v (q1, w0w1) `∗v · · · ,

where wj ∈ Γ∗ for all j ∈ N and there is p ∈ Q such that qm = p for infinitely many
m ∈ N. Since v ∈ R the VPA never pops any symbols from w0 · · ·wj while reading v
in (qj, w0 · · ·wj) `∗v (qj+1, w0 · · ·wj+1) and so we have (qj,⊥) `∗v (qj+1, wj+1). Since an
accepting run passes from final states infinitely often, we deduce that there are m, k ∈ N
such that (qI ,⊥) `∗uvm (p, w0 · · ·wm) and (p,⊥) `~v

k

(p, wm+1 · · ·wm+k). For u′ , uvm

and v′ , vk, we have that (u′, v′) ∈ LqI ,p|Uc
× L~p,p|R.

⇐: Let (u, v) ∈ S. There is p ∈ Q such that (u, v) ∈ LqI ,p|C×L
~
p,p|C or (u, v) ∈ LqI ,p|Uc

×L~p,p|R.
Thus, there are two sequences of transitions (qI ,⊥) `∗u (p, z) and (p,⊥) `~v (p, w) for some
z, w ∈ Γ∗. If (u, v) ∈ C× C then z = w = ⊥. Thus, (qI ,⊥) `∗u (p,⊥) `~v (p,⊥) `~v · · · is an
accepting run of A on uvω. If (u, v) ∈ Uc× R then (p, w′)`∗v (p, w′w) for every w′ ∈ Γ∗ and in
particular we have (p, z)`∗v (p, zw). Therefore, (qI ,⊥)`∗u (p, z)`~v (p, zw)`~v (p, zww) · · ·
is an accepting run of A on uvω.

61

Kyveli Doveri

7.2.2 Reduction to a Finite Basis
Next, we fix a pair of M -preserving well-quasiorders 6,4 and show the existence of a
subset Sfinite such that Equation (†) holds. Since 6 × 4 is a well-quasiorder, there exist
two finite bases S1 and S2 for S|C×C and S|Uc×R respectively, w.r.t. 6 × 4. We define
Sfinite to be the union of such sets S1, S2, viz., Sfinite , S1 ∪ S2 ⊆ S. We have that:
∀(u, v) ∈ S, uvω ∈ M =⇒ ∀(u, v) ∈ Sfinite, uv

ω ∈ M . We now turn to the converse
implication. Assume that ∀(u, v) ∈ Sfinite, uv

ω ∈ M . Let (u, v) ∈ S. If (u, v) ∈ S|C×C

then there is (u0, v0) ∈ S1 such that (u0, v0) 6 × 4 (u, v). Since S1 ⊆ S|C×C ⊆ C × C we
have that (u0, v0), (u, v) ∈ C × C. Since u0v

ω
0 ∈ M and the pair 6,4 is M -preserving, we

conclude that uvω ∈ M . The case (u, v) ∈ S|Uc×R proceeds analogously. It follows that
∀(u, v) ∈ S, uvω ∈ M ⇐= ∀(u, v) ∈ Sfinite, uv

ω ∈ M . Hence, we derive Equation (†) using
Proposition (16).

7.3 Fixpoint Characterization
In this section, we present a least fixpoint characterization of S for the VPAA = (Q, qI ,Γ, δ, F).

To this end, we work with the complete lattice (℘(Σ∗)n·|Q|2 ,⊆× · · · × ⊆), where n ∈ {4, 6},
and each Cartesian product consists of n · |Q|2 factors. Given a n · |Q|2-dimensional vector X
and a |Q|2-dimensional vector Y on ℘(Σ∗) we write Xi,p,q, for the (i, p, q)-component of X and
Yp,q for the (p, q)-component of Y . We define the following equations where X,X ′ ∈ ℘(W)|Q|2 ,
Y, Y ′ ∈ ℘(C)|Q|2 , Z,Z ′ ∈ ℘(R)|Q|2 , and T ∈ ℘(Uc)|Q|2 :

W (X) = 〈Lp,q |(Σi∪{ε}) ∪
⋃

(p,c,p′,γ)∈δc,
(q′,r,γ,q)∈δr

cXp′,q′r ∪
⋃
q′∈Q

Xp,q′ Xq′,q〉p,q∈Q

C(X, Y) = 〈Lp,q |Σr
∪Xp,q ∪

⋃
q′∈Q

Yp,q′Yq′,q〉p,q∈Q

R(X,Z) = 〈Lp,q |Σc
∪Xp,q ∪

⋃
q′∈Q

Zp,q′Zq′,q〉p,q∈Q

U(Y, Z, T) = 〈Lp,q |Σc
∪

⋃
p′,q′∈Q,

Yp,p′Tp′,q′Zq′,q〉p,q∈Q

W~(X,X ′) = 〈L~p,q |Σi
∪
⋃

(p,c,p′,γ)∈δc,
(q′,r,γ,q)∈δr,
{p,q}∩F 6=∅

cXp′,q′r ∪
⋃

(p,c,p′,γ)∈δc,
(q′,r,γ,q)∈δr

{p,q}∩F=∅

cX ′p′,q′r ∪
⋃
q′∈Q

(X ′p,q′Xq′,q ∪Xp,q′X
′
q′,q)〉p,q∈Q

C~(X ′, Y, Y ′) = 〈L~p,q |Σr
∪X ′p,q ∪

⋃
q′∈Q

(Y ′p,q′Yq′,q ∪ Yp,q′Y ′q′,q)〉p,q∈Q

R~(X ′, Z, Z ′) = 〈L~p,q |Σc
∪X ′p,q ∪

⋃
q′∈Q

(Z ′p,q′Zq′,q ∪ Zp,q′Z ′q′,q)〉p,q∈Q .

The equationsW , C, R and U are used to obtain the set of words in W, C, R and Uc, respectively,
that connects two configurations of A. The equations W~, C~ and R~ refine W , C and R by
filtering out words not visiting final states. In turn we define the functions fA and rA used to

62

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

obtain the prefixes u and the periods v for the decompositions (u, v) ∈ S. Define

fA : ℘(Σ∗)4·|Q|2 −→ ℘(Σ∗)4·|Q|2

(X, Y, Z, T) 7−→ (W (X), C(X, Y), R(X,Z), U(Y, Z, T))
for the prefixes, and for the periods define

rA : ℘(Σ∗)6·|Q|2 −→ ℘(Σ∗)6·|Q|2

(X, Y, Z,X ′, Y ′, Z ′) 7−→
(
W (X),C(X,Y),R(X,Z),W~(X,X′),C~(X′,Y,Y ′),R~(X′,Z,Z′)

)
.

Note that the function fA (resp. rA) is increasing and the supremum of the ascending
sequence of its Kleene iterates starting at the bottom value ~∅ , (∅, . . . , ∅) of dimension
4 · |Q|2 (resp. 6 · |Q|2) is the vector (Λ|W,Λ|C,Λ|R,Λ|Uc) (resp. (Λ|W,Λ|C,Λ|R,Λ~|W,Λ~|C,Λ~|R)),
where Λ|J , 〈Lp,q |J〉p,q∈Q and Λ~|J , 〈L~p,q |J〉p,q∈Q for J ∈ {W, C, R, Uc}. Therefore, by the
Knaster–Tarski Theorem we obtain the following proposition.

Proposition 17. lfp fA = (Λ|W,Λ|C,Λ|R,Λ|Uc) and lfp rA = (Λ|W,Λ|C,Λ|R,Λ~|W,Λ~|C,Λ~|R).

Proof. We prove that the supremum of the ascending sequence of Kleene iterates of fA
(resp. rA) starting at the bottom value ~∅ of dimension 4 · |Q|2 (resp. 6 · |Q|2) is the vector
(Λ|W,Λ|C,Λ|R,Λ|Uc) (resp. (Λ|W,Λ|C,Λ|R,Λ~|W,Λ~|C,Λ~|R)). By observing that for all X ⊆|Q|2 Λ|W,
X ′ ⊆|Q|2 Λ~|W, Y ⊆|Q|

2 Λ|C, Y ′ ⊆|Q|
2 Λ~|C, Z ⊆|Q|

2 Λ|R, Z ′ ⊆|Q|
2 Λ~|R and T ⊆|Q|2 Λ|Uc we have

• W (X) ⊆|Q|2 Λ|W, C(X, Y) ⊆|Q|2 Λ|C, R(X,Z) ⊆|Q|2 Λ|R, U(Y, T, Z) ⊆|Q|2 Λ|Uc ,

• W~(X,X ′) ⊆|Q|2 Λ~|W, C~(X ′, Y, Y ′) ⊆|Q|2 Λ~|C, R~(X ′, Z, Z ′) ⊆|Q|2 Λ~|R,

we deduce that for every n ∈ N we have fAn(~∅) ⊆4·|Q|2 (Λ|W,Λ|C,Λ|R,Λ|Uc) and rAn(~∅) ⊆6·|Q|2

(Λ|W,Λ|C,Λ|R,Λ~|W,Λ~|C,Λ~|R). Next we prove the converse inclusions.

• For every n ∈ N we define (Xn, Yn, Zn, Un) , fAn(~∅). First we show by induction on
the length of the words that for all p, q ∈ Q and x ∈ Lp,q |W there is n ∈ N such that
x ∈ (Xn)p,q. Let p, q ∈ Q and x ∈ Lp,q |W. By Definition 3.6.1 we have that x ∈ Σi∪{ε}, or
x = cx′r with c ∈ Σc, x′ ∈ W and r ∈ Σr, or x = x′x′′ with x′, x′′ ∈ W\{ε}. If x ∈ Σi∪{ε}
then x ∈ (X1)p,q. Let 2 ≤ |x|. Assume that for all p′, q′ ∈ Q and x′ ∈ Lp′,q′ |W such that
|x′| < |x| we have x′ ∈ (Xn)p′,q′ for some n ∈ N. If x = cx′r with c ∈ Σc, x′ ∈ W and
r ∈ Σr, then there are (p, c, p′, γ) ∈ δc and (q′, r, γ, q) ∈ δr such that (p′, γ) `∗x (q′, γ).
Since x′ ∈ W we deduce that x′ ∈ Lp′,q′ |W. Hence, by induction assumption we have
that x′ ∈ (Xn)p′,q′ for some n ∈ N. Thus, x ∈ c(Xn)p′,q′r ⊆ (Xn+1)p,q. If x = x′x′′

with x′, x′′ ∈ W\{ε}, then x′ ∈ Lp,q′ |W and x′′ ∈ Lq′q |W for some q′ ∈ Q. Using the
induction assumption we find that x ∈ (Xn)p,q′(Xm)q′,p for some n,m ∈ N. We can
assume that n ≤ m. Since, Xn ⊆|Q|

2
Xm we find that x ∈ (Xm)p,q′(Xm)q′,q ⊆ (Xm+1)p,q.

Thus, Λ|W ⊆4·|Q|2 ⋃
n∈NXn. The proofs that Λ|C ⊆4·|Q|2 ⋃

n∈N Yn, Λ|R ⊆4·|Q|2 ⋃
n∈N Zn and

Λ|Uc ⊆4·|Q|2 ⋃
n∈N Un proceed similarly.

• For every n ∈ N we define (Xn, Yn, Zn, X
~
n , Y

~
n , Z

~
n) , rAn(~∅). The cases of Λ|W ⊆|Q|

2⋃
n∈NXn, Λ|C ⊆|Q|

2 ⋃
n∈N Yn and Λ|R ⊆|Q|

2 ⋃
n∈N Zn proceed as done previously. We show

63

Kyveli Doveri

by induction on the length of the words that for all p, q ∈ Q and x ∈ L~p,q |W there
is n ∈ N such that x ∈ (X~n)p,q. Let p, q ∈ Q and x ∈ L~p,q |W. We have x 6= ε. If
x ∈ Σi then x ∈ (X~1)p,q. Let 2 ≤ |x|. Assume that for all p′, q′ ∈ Q and x′ ∈ L~p′,q′ |W
such that |x′| < |x| we have x′ ∈ (X~n)p′,q′ for some n ∈ N. If x = cx′r with c ∈ Σc,
x′ ∈ W and r ∈ Σr, then there are (p, c, p′, γ) ∈ δc and (q′, r, γ, q) ∈ δr such that
x′ ∈ Lp′,q′ |W and p ∈ F , or q ∈ F or x′ ∈ L~p′,q′ |W. Since Λ|W ⊆|Q|

2 ⋃
n∈NXn there is

n ∈ N such that x′ ∈ (Xn)p′,q′ . If p ∈ F or q ∈ F then x ∈ c(Xn)p′,q′r ⊆ (X~n+1)p,q.
If x′ ∈ L~p′,q′ |W we conclude similarly using the induction hypothesis. If x = x′x′′ with
x′, x′′ ∈ W\{ε} and |x′|, |x′′| < |x|, then x′ ∈ Lp,q′ |W and x′′ ∈ Lq′q |W for some q′ ∈ Q

and we have that x′ ∈ L~p,q′ |W or x′′ ∈ L~q′q |W. Using the induction assumption we find
that x ∈ ⋃q′∈Q((Xn)p,q′(X~n)q′,q ∪ (X~n)p,q′(Xn)q′,q

)
⊆ (X~n+1)p,q for some n ∈ N. Thus,

Λ~|W ⊆|Q|
2 ⋃

n∈N, X
~
n . The proofs that Λ~|C ⊆|Q|

2 ⋃
n∈N Y

~
n and Λ~|R ⊆|Q|

2 ⋃
n∈N Z

~
n are

similar.

Finally, by Proposition 17, we obtain the desired fixpoint characterization of S:

S = ⋃
p∈Q

((
(lfp fA)2,qI ,p × (lfp rA)5,p,p

)
∪
(
(lfp fA)4,qI ,p × (lfp rA)6,p,p

))
. (7.1)

Example 20. We derive from the VPA A depicted in Fig. 3.2 the following functions

W (X) , {ε} ∪ cXr ∪XX, C(X, Y) , X ∪ Y Y,
R(X,Z) , {c} ∪X ∪ ZZ, U(Y, Z, T) , {c} ∪ Y TZ .

Hence, we obtain the function

fA : ℘(Σ∗)4 −→ ℘(Σ∗)4

(X, Y, Z, T) 7−→ (W (X), C(X, Y), R(X,Z), U(Y, Z, T)) .

The first three iterates of the least fixpoint computation of lfp fA are given by

fA(~∅) = ({ε}, ∅, {c}, {c}),
fA

2(~∅) = ({ε, cr}, {ε}, {ε, c, c2}, {c}),
fA

3(~∅) = ({ε, cr, c2r2, (cr)2}, {ε, cr}, {ε, cr, c, c2, c3, c4}, {c, c2, c3})
...

lfp fA = (W, W, R, R\C)

Since the unique state of A is a final state we have that LqI ,qI
= L~qI ,qI

. Consequently, the
function fA suffices to describe both the set of prefixes and the set of periods of S given by(
(lfp fA)2 × (lfp fA)2\{ε}

)
∪
(
(lfp fA)4 × (lfp fA)3\{ε}

)
.

64

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

7.4 Monotonicity Requirements
In order to detect finite bases among the Kleene iterates of the functions defined in the previous
section we replace the set inclusion on ℘(Σ∗), used so far, with the qo vn ⊆ ℘(Σ∗)× ℘(Σ∗)
defined by X vn Y

4⇐⇒ ∀x ∈ X, ∃y ∈ Y, y n x. The qo vn leverage the notion of basis:
given X ∈ ℘(Σ∗) a subset Y ⊆ X is a basis for X with respect to n whenever X vn Y .

In the following we lift the notion of basis to n-dimensional vectors component-wise and work
with the quasiordered sets (℘(Σ∗)n·|Q|2 , vn·|Q|

2

n), where n ∈ {4, 6} and the ordering vn·|Q|
2

n is
given by the product vn × · · · × vn of n · |Q|2 factors. Given a pair 6,4 of well-quasiorders,
the orderings v4·|Q|2

6 and v6·|Q|2
4 are used to compare the Kleene iterates of the functions fA

and rA, respectively. For them to be apt to detect finite bases for the least fixpoints of these
functions the quasiorders 6 and 4 need to verify some monotonicity conditions.

We introduce the monotonicity conditions W,C,R,C~ ,R~ and U on a qo n ⊆ Σ∗ × Σ∗ as
follows: for all u, u′ ∈ Σ∗ such that un u′

(W) if u, u′ ∈ W and c ∈ Σc ,r ∈ Σr then cur n cu′r,
(C) if u, u′ ∈ C and s ∈ C ,t ∈ Σ∗ then sutn su′t,
(R) if u, u′ ∈ R and s ∈ Σ∗,t ∈ R then sutn su′t,
(U) if u, u′ ∈ Uc and s ∈ C ,t ∈ R then sutn su′t,
(C~) if u, u′ ∈ C and s ∈ C ,t ∈ C then sutn su′t,
(R~) if u, u′ ∈ R and s ∈ R ,t ∈ R then sutn su′t.

A pair of quasiorders 6,4 is monotonic if 6 verifies W,C,R,U and 4 verifies W,C~ ,R~ .
Proposition 18. Let 6,4 be a pair of well-quasiorders. There is a positive integer n such
that fAn+1(~∅) v4·|Q|2

6 fAn(~∅) (resp. rAn+1(~∅) v6·|Q|2
4 rAn(~∅)); and, if the pair of well-quasiorders

is monotonic then lfp fA v4·|Q|2
6 fAn(~∅) (resp. lfp rA v6·|Q|2

4 rAn(~∅)).

Proof. The sequence of Kleene iterates of fA is ascending w.r.t. v4·|Q|2
6 and since ≤ is a well-

quasiorder the quasiordered set (℘(Σ∗)4·|Q|2 , v4·|Q|2
6) satisfies the ascending chain condition [23].

Therefore, there is a positive integer n such that for every n′ ≥ n we have fAn
′(~∅) v4·|Q|2

6 fAn(~∅)
and fAn(~∅) v4·|Q|2

6 fAn
′(~∅). Next we show that we can detect such a n using v4·|Q|2

6 .

Let m be a positive integer such that fAm+1(~∅) v4·|Q|2
6 fAm(~∅). An easy induction that uses

Proposition 22 shows that for every k ≥ m we have fAk+1(~∅) v4·|Q|2
6 fAk(~∅). Hence, by

transitivity of v4·|Q|2
6 we deduce that for every k ≥ m we have fAk(~∅) v4·|Q|2

6 fAm(~∅). Since
the sequence of Kleene iterates of fA is ascending we also have fAm(~∅) v4·|Q|2

6 fAk(~∅) for every
k ≥ m. We have fAm(~∅)⊆4·|Q|2 lfp fA and since lfp fA is the supremum of the sequence of
Kleene iterates of fA we deduce that lfp fA v4·|Q|2

6 fAm(~∅). Thus, fAn(~∅) is a basis for lfp fA.
The analogue reasoning apply for rA.

Each Kleene iterate of fA and rA is computable and given a decidable qo n on Σ∗ and two
finite sets X, Y ⊆ Σ∗ it is decidable whether X vn Y holds. Thus, given a monotonic pair

65

Kyveli Doveri

6,4 of decidable well-quasiorders, by Proposition 18, we can compute a finite basis for lfp fA
w.r.t. 6 and a finite basis for lfp rA w.r.t. 4. Hence, by Equation (7.1) we can compute a
finite basis for S w.r.t. 6×4.

7.5 Quasiorders for ω-VPL
In the following we present two M -suitable pairs of quasiorders to solve the inclusion problem
Lω(A) ⊆M .

7.5.1 A State-based Pair
Given a VPA B = (Q̂, q̂I , Γ̂, δ̂, F̂) we associate to each word u ∈ Σ∗ its context ctxB(u) and
final context ctxB~(u) in B as follows:

ctxB(u) , {(p, q) ∈ Q̂2 | ∃w ∈ Γ̂∗, (p,⊥) `∗u (q, w)},
ctxB~(u) , {(p, q) ∈ Q̂2 | ∃w ∈ Γ̂∗, (p,⊥) `~u (q, w)} .

Hence, we define the following quasiorders on words in Σ∗:

u 6B u′
4⇐⇒ ctxB(u) ⊆ ctxB(u′), u 4B u′

4⇐⇒ u 6B u′ ∧ ctxB~(u) ⊆ ctxB~(u′) .

Proposition 19. Let B be a VPA. The pair 6B,4B is Lω(B)-suitable.

Proof. The quasiorders 6B and 4B are decidable well-quasiorders since Q̂ is a finite set. We
show that the pair 6B,4B is monotonic.

(W) Let u, u′ ∈ W such that u 6B u′, c ∈ Σc and r ∈ Σr. We show that cur 6B cu′r. Let
(p, q) ∈ ctxB(cur). Since u, cur ∈ W, there is γ ∈ Γ and (p′, q′) ∈ ctxB(u) such that
(p,⊥)`c (p′, γ) and (q′, γ)`r (q,⊥). Since u 6B u′ and u′ ∈ W we have (p′,⊥)`∗u′ (q′,⊥).
Hence, (p,⊥) `∗cu′r (q,⊥), that is (p, q) ∈ ctxB(cu′r). Thus, cur 6B cu′r.

We assume that u 4B u′ and show that cur 4B cu′r. We have ctxB(cur) ⊆ ctxB(cu′r)
and if (p, q) ∈ ctxB~(cur) then (p,⊥) `~c (p′, γ), or (p′,⊥) `~u (q′,⊥) or (q′, γ) `~r (q,⊥).
Thus, (p, q) ∈ ctxB~(cu′r).

(C) Let u, u′ ∈ C such that u 6B u′, s ∈ C and t ∈ Σ∗. We show that sut 6B su′t. Let
(p, q) ∈ ctxB(sut). We have (p,⊥) `∗sut (q, w) for some w ∈ Γ∗. Since s ∈ C and
u ∈ C, there are two states p′, q′ ∈ Q such that (p,⊥) `∗s (p′,⊥), (p′,⊥) `∗u (q′,⊥) and
(q′,⊥)`∗t (q, w). Since u 6B u′, we also have (p′,⊥)`∗u′ (q′,⊥). Hence, (p,⊥)`∗su′t (q, w)
and (p, q) ∈ ctxB(su′t).

We assume that u 4B u′ and show that sut 4B su′t. We have ctxB(sut) ⊆ ctxB(su′t)
and if (p, q) ∈ ctxB~(sut) then (p,⊥) `~s (p′,⊥) or (p′,⊥) `~u (q′,⊥) or (q′,⊥) `~t (q, w).
If (p′,⊥) `~u (q′,⊥) then since u 4B u′ we also have (p′,⊥) `~u

′
(q′,⊥). In any case, we

deduce that (p,⊥) `~su
′t (q, w), that is (p, q) ∈ ctxB~(su′t). Hence, sut 4B su′t.

66

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

(R) Let u, u′ ∈ R s ∈ Σ∗ and t ∈ R. We assume that u 6A u′ and show that sut 6B su′t.
Let (p, q) ∈ ctxB(sut). We have (p,⊥) `∗sut (q, w) for some w ∈ Γ∗. Since u, t ∈ R, we
deduce that there are two states p′, q′ ∈ Q such that (p,⊥)`∗s (p′, w′), (p′,⊥)`∗u (q′, w′′),
(q′,⊥)`∗t(q, w′′′) and w = w′′′w′′w′. Since u 6A u′, we also have (p′,⊥)`∗u′(q′, z) for some
z ∈ Γ∗. Hence we have (p,⊥)`∗su′t(q, w′zw′′′) and (p, q) ∈ ctxB(su′t). Hence,sut 6B su′t.

We assume that u 4B u′ and show that sut 4B su′t. We have ctxB(sut) ⊆ ctxB(su′t) and
by a similar reasoning as in 2. we find that ctxB~(sut) ⊆ ctxB~(su′t). Hence, sut 4B su′t.

(U) Let u, u′ ∈ Σ∗, s ∈ C and t ∈ R. We assume that u 6B u′ and show that sut 6B su′t.
Let (p, q) ∈ ctxB(sut). We have (p,⊥) `∗sut (q, w) for some w ∈ Γ∗. Since s ∈ C
and t ∈ R, there are two states p′, q′ ∈ Q and two words w′, w′′ ∈ Γ∗ such that
(p,⊥)`∗s (p′,⊥), (p′,⊥)`∗u (q′, w′) and (q′,⊥)`∗t (q, w′′), with w = w′w′′. Since u 6B u′,
we also have (p′,⊥) `∗u′ (q′, z) for some z ∈ Γ∗. Hence, we have (p,⊥) `∗su′t (q, zw′′)
and (p, q) ∈ ctxB(su′t). Hence, sut 6B su′t.

We assume that u 4B u′ and show that sut 4B su′t. We have ctxB(sut) ⊆ ctxB(su′t) and
by a similar reasoning as in 2. we find that ctxB~(sut) ⊆ ctxB~(su′t). Hence, sut 4B su′t.

We now show that the pair 6B,4B is Lω(B)-preserving. Let (u, v), (u′, v′) ∈ Ld such that
(u, v), (u′, v′) ∈ C×C or (u, v), (u′, v′) ∈ Uc×R and such that u 6B u′, v 4B v′ and uvω ∈ Lω(B).
Since (u, v) ∈ Ld an accepting run for uvω on B can be factored by (q̂I ,⊥) `∗u (q, w1) `∗v

n

(p, w2) `~v
m

(p, w3) for some n,m ∈ N, with m 6= 0, q, p ∈ Q̂, and words w1, w2, w3 ∈ Γ∗.
If (u, v), (u′, v′) ∈ C × C then vk, (v′)k ∈ C for all k ∈ N and w1 = w2 = w3 = ⊥. Since
4B satisfies the monotonicity condition C~ and v 4B v′ we deduce that vk 4B (v′)k, for
all k ∈ N. Therefore, we have (q,⊥) `∗(v′)n (p,⊥) and (p,⊥) `~(v′)m

(p,⊥). Since u 6B u′
we have (q̂I ,⊥) `∗u′ (q,⊥). Hence, there is an accepting run of B on u′v′ω. Likewise, if
(u, v), (u′, v′) ∈ Uc × R then vk, (v′)k ∈ R for all k ∈ N and since 4B satisfies the monotonicity
condition R~ and v 4B v′, we deduce that vk 4B (v′)k, for all k ∈ N. Hence, we deduce an
accepting run of B on u′v′ω.

Example 21. Consider the pair of quasiorders 6B,4B derived as explained above from B
(Fig. 3.2) and the set S = (W × W\{ε}) ∪ (R\C × R\{ε}) from Example 19. We have that
ctxB(ε) = {(p, p), (q, q)}, ctxB~(ε) = {(p, p)}, ctxB(u) = {(p, q), (q, q)} and ctxB~(u) = {(p, q)}
for every u ∈ R\{ε}. We have that {c} is a basis for R\{ε} w.r.t. 4B since c 4B u for every
u ∈ R\{ε}. Since R\C ⊆ R\{ε} and {c} ⊆ R\C we deduce that {c} is also a basis for R\C w.r.t
6B. Similarly we deduce that {ε, cr} is basis for W w.r.t 6B and that {cr} is a basis for W\{ε}
w.r.t. 4B. Hence, ({ε, cr} × {cr}) ∪ ({c} × {c}) is a basis for S w.r.t. 6B × 4B.

67

Kyveli Doveri

7.5.2 A Syntactic Pair
Given a ω-VPL M we associate to each word u ∈ Σ∗ its context ctxM(u) and final context
ctxM~ (u) in M as follows:

ctxM(u) , {(s, ξ) ∈ Σ∗ × Σω | suξ ∈M},
ctxM~ (u) , {(s, t) ∈ Σ∗ × Σ∗ | s(ut)ω ∈M} .

At first glance, we are tempted to define the syntactic quasiorders from ctxM and ctxM~ in the
analogue way we defined the state-based quasiorders from the contexts and final contexts
relatively to a VPA. Although, this definition provides a pair of M -preserving quasiorders,
it does not guarantee that the pair is M -suitable. To overcome this, we impose the respect
of the partition P , {W, C\W, R\W, Uc\R} of Σ∗, meaning that two words compare only if they
belong to the same subset of P. Additionally, given J ∈ P we compare two words of J by
considering a restriction of their context and final context in M which depends on J. More
precisely, we define the qo 6M on Σ∗ as the union ⋃J∈P 6

M
J where for every J ∈ P, the qo

6MJ ⊆ J× J is defined by

u 6MW u′
4⇐⇒ ctxM(u) ⊆ ctxM(u′),

u 6MC\W u
′ 4⇐⇒ ctxM(u)|C×Σω ⊆ ctxM(u′)|C×Σω ,

u 6MR\W u
′ 4⇐⇒ ctxM(u)|Σ∗×Rω ⊆ ctxM(u′)|Σ∗×Rω ,

u 6MUc\R u
′ 4⇐⇒ ctxM(u)|C×Rω ⊆ ctxM(u′)|C×Rω .

Similarly, we define the qo 4M , ⋃J∈P 4
M
J on Σ∗ where for every J ∈ P , 4MJ ⊆ J× J is the

qo defined by
u 4MW u′

4⇐⇒ u 6MW u′ ∧ ctxM~ (u) ⊆ ctxM~ (u′),
u 4MC\W u

′ 4⇐⇒ u 6MC\W u
′ ∧

(
ctxM~ (u)|C×C ⊆ ctxM~ (u′)|C×C

)
,

u 4MR\W u
′ 4⇐⇒ u 6MR\W u

′ ∧
(
ctxM~ (u)|Σ∗×R ⊆ ctxM~ (u′)|Σ∗×R

)
,

u 4MUc\R u
′ 4⇐⇒ u, u′ ∈ Uc\R .

Lemma 8. Given a VPA B, J ∈ P and two words u, u′ ∈ J we can decide whether u 6L
ω(B)

J u′.

Proof. Let B = (Q, qI ,Γ, δ, F) be a VPA, J ∈ P and u ∈ J. We define the VPA BJ
u =

(Q∪Q∪{∗}, qI , δ∪δ∪δJ ,Γ∪{$}, F) over the alphabet Σ$, Σ∪{$, $c, $r} where $, $c, $r /∈ Σ∪Γ
are new symbols for internal, call and return positions resp., and where Q , {q | q ∈ Q} is
a copy of Q, F , {q ∈ Q | q ∈ F}, δ simulates δ on Q and δJ is defined according to J as
follows:

• for J = W, δW , {(p, $, q) | (p, q) ∈ ctxB(u)},

• for J = C\W, δC\W , {(p, $r,⊥, q) | (p, q) ∈ ctxB(u)},

• for J = R\W, δC\W , {(p, $c, q, $) | (p, q) ∈ ctxB(u)} and,

• for J = Uc\R, δUc\R , {(p, $r,⊥, ∗), (∗, $c, q, $) | (p, q) ∈ ctxB(u)}.

68

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

We have Lω(BW
u) = {s$ξ ∈ Σω

$ | suξ ∈ M}, Lω(BC\W
u) = {s$rξ ∈ Σω

$ | s ∈ C, suξ ∈ M},
Lω(BR\W

u) = {s$cξ ∈ Σω
$ | ξ ∈ Rω, suξ ∈M} and Lω(BUc\R

u) = {s$rξ ∈ Σω
$ | s ∈ C, ξ ∈ Rω, suξ ∈

M}. Thus, for u, u′ ∈ J we have u 6L
ω(B)

J u′ ⇐⇒ Lω(BJ
u) ⊆ Lω(BJ

u′).

Lemma 9. Given a VPA B, J ∈ P and two words u, u′ ∈ J we can decide whether u 4L
ω(B)

J u′.

Proof. Let B = (Q, qI ,Γ, δ, F) be a VPA and Σ$, Σ ∪ {$, $c, $r} where $, $c, $r /∈ Σ ∪ Γ are
new symbols for internal, call and return positions resp. For every J ∈ {W, C\W, R\W} and
u ∈ J we will define two VPA C1,J

u and C2,J
u over Σ$ to simulate the accepting runs of B of the

form (qI ,⊥) `∗s (q0, w0) `∗u (p0, w0) `∗t1 (q1, w1) `∗u (p1, w1) · · · such that C1,J
u simulates the

runs with (qn, wn) `~u (pn, wn) for infinitely many n ∈ N and C2,J
u simulates the runs with

(pn, wn) `~tn+1 (qn+1, wn+1) for infinitely many n ∈ N. Define MJ
u = Lω(BJ

u), where BJ
u is the

VPA defined in the proof of Lemma 8 and, M~J
u = Lω(C1,J

u) ∪ Lω(C2,J
u). For every word w we

will define C1,J
w and C2,J

w such that u 4MJ u′ ⇐⇒ MJ
u ⊆MJ

u′ ∧M~J
u ⊆M~J

u′ .

We define C1,J
u = (Q ∪q∈Q {pq | p ∈ Q}, qI ,Γ, δ1,J, {pq | (q, p) ∈ ctxB~(u)}) where δ1,J ,

δ ∪ δ$,1
J ∪q∈Q δq with δq , {(pq, a, p′) | (p, a, p′) ∈ δi} ∪ {(pq, a, p′, γ) | (p, a, p′, γ) ∈ δc} ∪

{(pq, a, γ, p′) | (p, a, γ, p′) ∈ δr} and δ$,1
J is defined according to J by δ$,1

W , {(q, $, pq) | (q, p) ∈
ctxB(u)}, δ$,1

C\W , {(q, $r,⊥, pq) | (q, p) ∈ ctxB(u)} and δ$,1
R\W , {(q, $c, pq, $) | (q, p) ∈ ctxB(u)}.

We define C2,J
u = (Q ∪ Q ∪ F 2

u , qI ,Γ, δ2,J, F 2
u) over Σ$ where Q is a copy of Q, F 2

u , {p$ |
∃q ∈ Q, (q, p) ∈ ctxB(u)}, and δ2,J , δ ∪ δ ∪ δ$,2

J ∪ δ2, δ simulates δ on Q, δ2 , {(p$, a, q) |
(p, a, q) ∈ δi}∪{(p$, a, q, γ) | (p, a, q, γ) ∈ δc}∪{(p$, a, γ, q) | (p, a, γ, q) ∈ δr}∪

⋃
p∈F{(p, a, q) |

(p, a, q) ∈ δi}∪ {(p, a, q, γ) | (p, a, q, γ) ∈ δc}∪ {(p, a, γ, q) | (p, a, γ, q) ∈ δr} and δ$,2
J is defined

according to J by δ$,2
W , {(q, $, p$) | (q, p) ∈ ctxB(u)}, δ$,2

C\W , {(q, $r,⊥, p$) | (q, p) ∈ ctxB(u)}
and δ$,2

R\W , {(q, c, p, $) | (q, p) ∈ ctxB(u)}.

Using Lemma 8 and the definitions of the VPA C1,J
u and C2,J

u it is an easy exercise to show
that u 4MJ u′ ⇐MJ

u ⊆MJ
u′ ∧M~J

u ⊆M~J
u′ . Since by Lemma 8 u 6L

ω(B)
J u′ ⇐⇒ MJ

u ⊆MJ
u′ it

remains to show that u 4MJ u′ =⇒ M~J
u ⊆M~J

u′ . Next we show this for J = W (the other cases
are similar). Assume u 4MW u′. By Theorem 11 it suffices to show that all ultimately periodic
words of M~W

u are in M~W
u′ . Let s$s1$s2 · · · $sk($t1$t2 · · · $tn)ω ∈M~

u . For s , sus1us2 · · ·usk
and t , t1ut2 · · ·utn we have (s, t) ∈ ctxM~ (u). Since ctxM~ (u) ⊆ ctxM~ (u′) we deduce that
s(u′t)ω = su′t1(ut2 · · ·utnu′t1)ω ∈ M . By iterating the previous argument we deduce that
s(u′t1u′t2 · · ·u′tn)ω ∈ M . For ξ , s1us2 · · ·usk(u′t1u′t2 · · ·u′tn)ω we have (s, ξ) ∈ ctxM(u).
Since ctxM (u) ⊆ ctxM (u′) we deduce that su′ξ = (su′s1)us2 · · ·usk(u′t1u′t2 · · ·u′tn)ω ∈M . By
iterating the previous argument we finally deduce that su′s1u

′s2 · · ·u′sk(u′t1u′t2 · · ·u′tn)ω ∈M .
Hence, s$s1$s2 · · · $sk($t1$t2 · · · $tn)ω ∈M~W

u′ .

Proposition 20. Let B be a VPA. The pair 6Lω(B),4L
ω(B) is Lω(B)-suitable.

Proof. First we show that the pair 6M ,4M is M -preserving, where M , Lω(B). Let
(u, v), (u′, v′) ∈ C × C (resp. Uc × R) such that u 6M u′, v 4M v′ and uvω ∈ M . From
u 6M u′ and uvω ∈M we deduce that (ε, vω) ∈ ctxM (u)|C×Σω ⊆ ctxM (u′)|C×Σω (resp. (ε, vω) ∈

69

Kyveli Doveri

ctxM(u)|C×Rω ⊆ ctxM(u′)|C×Rω). Thus, u′vω ∈ M . From v 4M v′ and u′vω ∈ M we deduce
that (u′, ε) ∈ ctxM~ (v)|C×C ⊆ ctxM~ (v′)|C×C (resp. (u′, ε) ∈ ctxM~ (v)|Σ∗×R ⊆ ctxM~ (v′)|Σ∗×R). Thus,
u′v′ω ∈M .

We now show that the qo 6M satisfies the monotonicity conditions C and R. Let u 6M u′

such that u, u′ ∈ C (resp. u, u′ ∈ R). Let s ∈ C and t ∈ Σ∗ (resp. s ∈ Σ∗ and t ∈ R). If
u, u′ ∈ W then it is easy to check that sut 6M su′t. Otherwise u, u′ ∈ C\W (resp. u, u′ ∈ R\W)
and we distinguish two cases: if t ∈ C (resp. s ∈ R) then sut, su′t ∈ C\W (resp. sut, su′t ∈ R\W).
We show that sut 6MC\W su′t (resp. sut 6MR\W su′t). Let (s′, ξ) ∈ ctxM(sut)|C×Σω (resp.
(s′, ξ) ∈ ctxM(sut)|Σ∗×Rω). Since s′s ∈ C (resp. tξ ∈ Rω), we deduce from u 6MC\W u

′ (resp.
u 6MR\W u

′) that (s′, ξ) ∈ ctxM(su′t)|C×Σω (resp. (s′, ξ) ∈ ctxM(su′t)|Σ∗×Rω). If t ∈ Uc (resp.
s ∈ Σ∗\R) then sut, su′t ∈ Uc\R and similarly we can show that sut 6MUc\R su

′t.

Next we show that the qo 4M satisfies the monotonicity conditions C~ and R~ . Let u 4M u′

such that u, u′ ∈ C (resp. u, u′ ∈ R). Let s, t ∈ C (resp. s, t ∈ R). If u, u′ ∈ C\W (resp.
u, u′ ∈ R\W) then sut, su′t ∈ C\W (resp. sut, su′t ∈ R\W). We show that sut 4MC\W su′t (resp.
sut 4MR\W su

′t). Previously we established that sut 6MC\W su′t (resp. sut 6MR\W su′t). Let (s′, t′) ∈
ctxM~ (sut)|C×C (resp. (s′, t′) ∈ ctxM~ (sut)|Σ∗×R). Since s′(sutt′)ω = s′s(utt′s) ∈ M we deduce
that (s′s, tt′s) ∈ ctxM~ (u)|C×C ⊆ ctxM~ (u′)|C×C (resp. (s′s, tt′s) ∈ ctxM~ (u)|Σ∗×R ⊆ ctxM~ (u′)|Σ∗×R).
Thus, (s′, t′) ∈ ctxM~ (su′t)|C×C (resp. (s′, t′) ∈ ctxM~ (su′t)|Σ∗×R). If u, u′ ∈ W then following
similar arguments as previously we can show that sut 4M su′t. The monotonicity conditions
W and U for 6M and the monotonicity condition W for 4M are left as an exercise to the
reader.

The quasiorders are decidable by Lemmas 8 and 9. Finally, the proof that 6M and 4M are
well-quasiorders follows from [23, Prop 1.2] by observing that for every J in the partition P of
Σ∗ we have 6B|J×J ⊆ 6MJ and 4B|J×J ⊆ 4MJ , where 6B and 4B are the state-based quasiorders
defined in Section 7.5. Next we show that 6B|J×J ⊆ 6MJ and 4B|J×J ⊆ 4MJ .

• Let J ∈ P and u 6B|J×J u
′. Let (s, ξ) ∈ ctxM(u) and

e : (qI ,⊥) `∗s (q, w) `∗u (p, w0) `ξ1 (p1, w1) `ξ2 (p2, w2) · · ·

be an accepting run of B for suξ where ξ = ξ1ξ2 · · ·. If J = C\W then we restrict s ∈ C.
Therefore, w = w0 = ⊥. An accepting run of B for su′ξ is obtained from e by replacing
the sequence of transitions (q,⊥)`∗u (p,⊥) by a sequence (q,⊥)`∗u′ (p,⊥) which exists
since (q, p) ∈ ctxB(u) ⊆ ctxB(u′). If J = R\W then we restrict ξ ∈ Rω. Since u ∈ R no
symbol from the stack w is popped while reading u in e. Therefore, (q, p) ∈ ctxB(u).
Thus, we can derive an accepting run of B for su′ξ from e by replacing the sequence
of transitions (q, w) `∗u (p, w0) by a sequence (q, w) `∗u′ (p, wz) (which exists since
ctxB(u) ⊆ ctxB(u′) and u′ ∈ R) and by observing that, since ξ ∈ Rω, the same infinite
sequence of transitions (p, w0) `ξ1 (p1, w1) `ξ2 (p2, w2) · · · can also be achieved starting
from (p, wz). The cases J ∈ {W, Uc\R} are handled similarly. In every case J, we have
u 6MJ u′.

• Let J ∈ P and u 4B|J×J u
′. Since u 6B|J×J u

′ and by the previous proof 6B|J×J ⊆ 6MJ we

70

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

have u 6MJ u′. Let (s, t) ∈ ctxM~ (u) and

d : (qI ,⊥) `∗s (q0, z0) `∗u (p0, w0) `∗t (q1, z1) `∗u (p1, w1) `∗t (q2, z2) · · ·

be an accepting run of B for s(ut)ω. If J = C\W then we restrict s, t ∈ C. Thus, wn =
zn = ⊥ for all n ∈ N. An accepting run of B for s(u′t)ω is obtained from d by replacing
every sequence of transitions (qn,⊥)`∗u (pn,⊥) by a sequence (qn,⊥)`∗u′ (pn,⊥) which
exists since ctxB(u) ⊆ ctxB(u′) and ctxB~(u) ⊆ ctxB~(u′). The cases J ∈ {W, R\W} are
analogues and use similar arguments as those in the proofs of 6B|J×J ⊆ 6MJ . The case
J = Uc\R is trivial.

Deciding the quasiorders 6M and 4M when M is ω-VPL, is as hard as the inclusion problem
between ω-VPL generated by VPA, as shown by the proofs of Lemmas 8 and 9. Nevertheless,
these quasiorders act as a gold standard for quasiorders in the sense formalized in the next
proposition.

Proposition 21. Let M ⊆ Σω be an ω-VPL and 6,4 be a M-suitable pair of quasiorders
such that 4 ⊆ 6. For every J ∈ P we have 6|J×J ⊆ 6M and 4|J×J ⊆ 4M .

Proof. First we show that for every J ∈ P we have 6|J×J⊆ 6M . For that we observe that
when M is ω-VPL we have 6M = 6MUP where 6MUP is the quasiorder on Σ∗ defined the
analogue way to 6M but using ctxMUP (u) , {(x, stω) ∈ Σ∗ × Σω | xustω ∈ M} instead of
ctxM(u). Hence, it suffices to show 6|J×J⊆ 6MUP . Let J ∈ P and u, u′ ∈ J such that u 6 u′.

• If J = W let s ∈ Σ∗ and wvω ∈ Σω such that suwvω ∈M . By Proposition 15 there is a
decomposition suwvω = s0t

ω
0 with (s0, t0) ∈ Ld. We can assume that su is a prefix of

s0, i.e. s0 = sus′ for some s′ ∈ Σ∗ (otherwise replace s by s0t
n
0 for n ∈ N large enough).

Hence, we have suwvω = sus′tω0 and (sus′, t0) ∈ Ld. It is an easy exercise to deduce
from u, u′ ∈ W = C∩R and the monotonicity conditions W,C,R that sus′ 6 su′s′. Since
u, u′ ∈ W we have sus′ ∈ J′ ⇐⇒ su′s′ ∈ J′ for J′ ∈ P, and since sus′ 6 su′s′, t0 4 t0,
the pair 6,4 is M -preserving and sus′tω0 ∈M we deduce that su′s′tω0 = su′wvω ∈M .

• If J = C\W let s ∈ C and s0t
ω
0 ∈ Σω such that sus0t

ω
0 ∈ M . By Proposition 15 we

can assume s0t
ω
0 ∈ Ld. By the monotonicity condition C we have sus0 6 su′s0. Since

sus0 ∈ C ⇐⇒ su′s0 ∈ C, t0 4 t0 and sus0t
ω
0 ∈ M and the pair 6,4 is M -preserving

we deduce that su′s0t
ω
0 ∈M .

• If J = R\W (resp. J = Uc\R) let s ∈ Σ∗ (resp. s ∈ C) and wvω ∈ Rω such that
suwvω ∈M . We can assume w, v ∈ R. By the monotonicity condition R (resp. U) we
have suw 6 su′w. Since su, su′ ∈ Uc, v ∈ R, v 4 v and the pair 6,4 is M -preserving
we have that su′wvω ∈M .

Second we show that for every J ∈ P we have 4|J×J ⊆ 4M . Let J ∈ P and u, u′ ∈ J such that
u 4 u′. Since 4 ⊆ 6 ⊆ 6M we have that u 6MJ u′.

• If J = W let s, t ∈ Σ∗ such that s(ut)ω ∈ M . Since u 4MW u′ by the monotonicity
condition C we have ut 4M u′t. Hence, since 6,4 is M -preserving if (s, t) ∈ Ld then

71

Kyveli Doveri

s(u′t)ω ∈ M . Assume s ∈ Uc and t /∈ R. If t ∈ C then there is n ∈ N such that
s(ut)n ∈ C. Hence, by preservation we find that s(u′t)ω ∈M where s , s(ut)n. We then
use that u 6 u′ (since 4 ⊆ 6) to deduce that s(u′t)ω ∈ M . If t ∈ Uc\R then t = t1t2
with t1 ∈ C\R and t2 ∈ R\C and we have s(ut)ω = sut1(t2ut1)ω. Since u 4MW u′ by the
monotonicity conditions W,C~ ,R~ we deduce that t2ut1 4M t2u

′t1. We then reason by
splitting cases and by using similar arguments as previously. The case s ∈ C and t ∈ Uc

is reduced to the case s ∈ Uc by replacing s with sut and by using similar arguments.

• If J = C\W let s, t ∈ C such that s(ut)ω ∈M . We have ut 4 u′t (monotonicity condition
C~), s 6 s, s(ut)ω ∈M and s, ut, u′t ∈ C thus by preservation s(u′t)ω ∈M .

• If J = R\W let s, t ∈ R such that s(ut)ω ∈ M . By the monotonicity condition R~ we
have sut 4 su′t and ut 4 u′t, thus also sut 6 su′t. Since sut, su′t ∈ Uc and ut, u′t ∈ R
we deduce by preservation that s(u′t)ω ∈M .

• If J = Uc\R then u, u′ ∈ Uc\R, thus u 4M u′.

By Propositions 20 and 21 the pair 6Lω(B),4L
ω(B) is the greatest (w.r.t ⊆×⊆) among the

Lω(B)-suitable pairs 6,4 of quasiorders that respect the partition P and that verify 4 ⊆ 6.

7.6 Algorithm
We are now in position to present our algorithm which, given two VPA A = (Q, qI ,Γ, δ, F) and
B = (Q̂, q̂I , Γ̂, δ̂, F̂) and a pair of Lω(B)-suitable quasiorders, decides the inclusion problem
Lω(A) ⊆ Lω(B).

Algorithm 6 computes a finite basis for S w.r.t. 6 × 4 (lines 1–2) and afterwards checks
membership in Lω(B) on every ultimately periodic word uvω stemming from this finite basis
(lines 3–7).

Algorithm 6: Algorithm for deciding Lω(A) ⊆ Lω(B)
Data: VPA A = (Q, qI ,Γ, δ, F) and B = (Q̂, q̂I , Γ̂, δ̂, F̂).
Data: Lω(B)-suitable pair 6,4.
Data: Procedure deciding uvω ∈ Lω(B) given (u, v).

1 Compute fAm(~∅) with least m s.t. fAm+1(~∅) v4·|Q|2
6 fAm(~∅);

2 Compute rAm
′(~∅) with least m′ s.t. rAm

′+1(~∅) v6·|Q|2
4 rAm

′(~∅);
3 foreach p ∈ Q do
4 foreach u ∈ (fAm(~∅))2,qI ,p, v ∈ (rAm

′(~∅))5,p,p do
5 if uvω /∈ Lω(B) then return false;
6 foreach u ∈ (fAm(~∅))4,qI ,p, v ∈ (rAm

′(~∅))6,p,p do
7 if uvω /∈ Lω(B) then return false;
8 return true;

72

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

Theorem 13. Given the required inputs, Algorithm 6 decides the inclusion problem Lω(A) ⊆
Lω(B).

Proof. As established by Proposition 18, given a monotonic pair 6,4 of decidable well-
quasiorders, Algorithm 6 computes in line 1 (resp. line 2) a finite basis fAm(~∅) (resp. rAm

′(~∅))
for lfp fA (resp. lfp rA) w.r.t. 6 (resp. 4). Next define:

Sm,m
′

A ,
⋃
p∈Q

((
(fAm(~∅))2,qI ,p × (rAm

′(~∅))5,p,p
)
∪
(
(fAm(~∅))4,qI ,p × (rAm

′(~∅))6,p,p
))

.

Using Equation (7.1) we deduce that Sm,m
′

A is a finite basis for S w.r.t. 6×4. Since the pair
6,4 is Lω(B)-preserving, by Section 7.1, we deduce that

Lω(A) ⊆ Lω(B) ⇐⇒ ∀(u, v) ∈ Sm,m
′

A , uvω ∈ Lω(B) .

We remark that Algorithm 6 can be easily adapted to decide the inclusion problem between
visibly pushdown languages of finite words. The adaptation to the finite words case omits the
fixpoint computation of line 2 and iterates over the components (i, qI , p) where i ∈ {2, 3, 4}
and where p ∈ F is a final state.

Example 22. Consider the iterates of the function fA from Example 20. One can check that
fA

4(~∅) v4
4B fA

3(~∅) (thus also fA4(~∅) v4
6B fA

3(~∅) since 4B ⊆ 6B). Thus, we check whether the
inclusion Lω(A) ⊆ Lω(B) holds on the finite set ({ε, cr}×{cr})∪({c, c2, c3}×{cr, c, c2, c3, c4})
and find the counterexample c(cr)ω ∈ Lω(A)\Lω(B).

7.6.1 Antichains Everywhere
We show next that Algorithm 6 remains correct if, in the sequence of Kleene iterates of fA or
rA, for each application of fA or rA we first select a finite basis for their arguments instead
(using 64·|Q|2 for fA and 46·|Q|2 for rA).

Proposition 22. Let n be a qo that verifies the monotonicity conditions W,C,R,U. If B
is a basis for (X, Y, Z, T) ∈ ℘(W)|Q|2 × ℘(C)|Q|2 × ℘(R)|Q|2 × ℘(Uc)|Q|2 w.r.t. n4·|Q|2, then fA(B)
is a basis for fA(X, Y, Z, T) w.r.t. n4·|Q|2. The analogue result holds for rA when n satisfies
the monotonicity conditions W,C~ ,R~.

Proof. Let n be a qo that verifies the monotonicity conditions W,C,R,U. Let (Y, Z, T) ∈
℘(C)|Q|2×℘(R)|Q|2×℘(Uc)|Q|2 such that (Y , Z, T) is a basis for (Y, Z, T). Let u ∈ U(Y, Z, T)p,q
such that u = ytz ∈ Yp,p′Tp′,q′Zq′,q, where y ∈ Yp,p′ , z ∈ Zq′,q and t ∈ Tp′,q′ for some p′, q′ ∈ Q.
There are y ∈ Y p,p′ , t ∈ T p′,q′ and z ∈ Zq′,q such that y n y, tn t and z n z. Since y n y by
the monotonicity condition C we have ytz n ytz. Since tn t by the monotonicity condition
U we have ytz n ytz. Since z n z by the monotonicity condition R we have that ytz n ytz.
By transitivity of n we thus obtain ytz n ytz. Therefore, U(Y, Z, T) v3·|Q|2

n U(Y , Z, T).
Intuitively, if a vector (Y, Z, T) is subsumed by a vector (Y , Z, T) then its image by U is

73

Kyveli Doveri

subsumed by the image of (Y , Z, T) by U . Similar results hold for the other components of
fA paired with the previous monotonicity conditions.

Since every Kleene iterate of fA belongs to ℘(W)|Q|2 × ℘(C)|Q|2 × ℘(R)|Q|2 × ℘(Uc)|Q|2 given a
basis B for fAn(~∅) w.r.t. 64·|Q|2 , by Proposition 22, fA(B) is a basis for fAn+1(~∅) w.r.t. 64·|Q|2 .
Hence, at each iteration we can select, for each (i, p, q)-component, a basis w.r.t. 6 and then
apply fA. In particular, we can keep antichains for each (i, p, q)-component, that is, finite
bases of incomparable words. The analogue result holds for the Kleene iterates of rA.

7.7 State-based Algorithm
Next we consider Algorithm 6 instantiated with the pair of state-based quasiorders of Sec-
tion 7.5.1.

7.7.1 Fixpoint Computation
Given an input vector the functions fA and rA add new words of type uu′, and cur to its
components, where c and r are fixed letters, and u, u′ are words already present in some
components of the vector. The following equalities show that we can inductively compute
the contexts and final contexts in B of newly added words in these functions: for every
u, u′ ∈ C ∪ R, c ∈ Σc, r ∈ Σr, we have

ctxB(uu′) = {(p, q) ∈ Q̂2 | ∃pi ∈ Q̂, (p, pi) ∈ ctxB(u), (pi, q) ∈ ctxB(u′)},
ctxB(cur) = {(p, q) ∈ Q̂2 | ∃(p′, q′) ∈ ctxB(u),∃γ ∈ Γ̂, (p, c, p′, γ) ∈ δ̂c, (q′, r, γ, q) ∈ δ̂r} .

The definitions for ctxB~(uu′) and ctxB~(cur) are left as exercise to the reader.

Example 23. Using the above definition it is routine to check that ctxB(c r) = {(p, q), (q, q)} be-
cause cr = cεr, ctxB(ε) = {(p, p), (q, q)} (Example 21) and
(p, c, q, A), (q, c, q, A) ∈ δ̂c, (q, r, A, q) ∈ δ̂r.

Using the context information cached along words we check convergence of the fixpoint
computations (lines 1–2) using the following quasiorders directly on contexts v⊆ on ℘(℘(Q̂2))4

for prefixes and v⊆×⊆ on ℘(℘(Q̂2)× ℘(Q̂2))6 for periods.

Incidentally, as we show below, we can perform the membership checks of lines 5 and 7 (asking
whether uvω ∈ Lω(B) given u and v) using the context information associated to the prefix u
and period v and nothing else.

7.7.2 Membership Check
To decide membership in Lω(B) we use the membership predicate IncB defined for x, y1, y2 ∈
℘(Q̂2) as follows:

IncB(x, y1, y2) , ∃q, p ∈ Q̂, (q̂I , q) ∈ x ∧ (q, p) ∈ y∗1 ∧ (p, p) ∈ y∗1 ◦ y2 ◦ y∗1 ,

74

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

where, given two binary relations y, y′ ∈ ℘(Q̂2) on states of B, the notation y ◦ y′ denotes
their composition, and y∗ denotes the Kleene closure of y.

Proposition 23. For all (u, v) ∈ Ld, IncB(ctxB(u), ctxB(v), ctxB~(v)) ⇐⇒ uvω ∈ Lω(B) .

Proof. Let (u, v) ∈ Ld. Note that if v ∈ C (resp. v ∈ R) then for every positive integer n we
have vn ∈ C (resp. vn ∈ R) and (p, q) ∈ ctxB(v)∗ ⇐⇒ ∃n, (p, q) ∈ ctxB(vn). Therefore, if
IncB(ctxB(u), ctxB(v), ctxB~(v)) holds then there are q, p ∈ Q̂ and two positive integers n,m
such that (q̂I , q) ∈ ctxB(u), (q, p) ∈ ctxB(vn) and (p, p) ∈ ctxB~(vm). If (u, v) ∈ C × C then
we deduce an accepting run of B on uvω of the form (q̂I ,⊥) `∗u (q,⊥) `∗vn (p,⊥) `~v

m

(p,⊥)
for uvω. If (u, v) ∈ Uc × R then we deduce an accepting run of B on uvω of the form
(q̂I ,⊥) `∗u (q, w) `∗vn (p, ww′) `~v

m

(p, ww′w′′) for some w,w′, w′′ ∈ Γ.

Conversely if uvω ∈ Lω(B) then there is an accepting run of B on uvω.

• If (u, v) ∈ C× C then this run is of the form

(q̂I ,⊥) `∗u (q,⊥) `∗v (q1,⊥) `∗v (q2,⊥) `∗v · · ·

Since Q̂ is finite, there is p ∈ Q̂ and a sequence {nk}k∈N such that qnk
= p for all k ∈ N.

Since the run is accepting there is m ∈ N such that (p,⊥) `~v
m

(p,⊥).

• If (u, v) ∈ Uc × R then it is of the form

(q̂I ,⊥) `∗u (q, w0) `∗v (q1, w1) `∗v (q2, w1w2) `∗v · · ·

where for each j ∈ N no symbol of wj is popped while reading v in the sequence
of transitions (qj, wj) `∗v (qj+1, wjwj+1). Thus, we can derive sequences (qj,⊥) `∗v
(qj+1, wj+1) for every j ∈ N. There is p ∈ Q̂ and a sequence {nk}k∈N such that
qnk

= p for all k ∈ N and since the run is accepting there is m ∈ N such that
(p,⊥) `~v

m

(p, wnj
· · ·wnj+m

).

In both cases we deduce that (q̂I , q) ∈ ctxB(u), (q, p) ∈ ctxB(vn0) and (p, p) ∈ ctxB~(vm). Thus,
IncB(ctxB(u), ctxB(v), ctxB~(v)) holds.

By showing how to reason on contexts directly (for comparisons, for applying functions fA
and rA, for convergence check and for membership check) we removed the need to store
words altogether since their contexts suffice. To sum up, Algorithm 6 instantiated with the
state-based quasiorders can be implemented directly manipulating subsets of ℘(Q̂2) (for the
prefixes) and pairs of subsets of ℘(Q̂2) (for the periods) thereby removing the need to store
and manipulate words. We call this implementation of Algorithm 6 the state-based algorithm.
We conclude this section with its complexity.

Proposition 24. Let n , |Q|, n̂ , |Q̂| and m , max{1, |Σ|}. The running time of the
state-based algorithm is 2O(n̂2)m2n4.

Proof. We assume that computing the compositions x ◦ y for x, y ∈ ℘(Q̂2) and checking the
inclusion x ⊆ y take O(n̂4). The number of composition operations needed for each component

75

Kyveli Doveri

1 10 100 1,000

1

10

100

1,000

omegaVPLinc runtime

U
lti
m
at
e
ru
nt
im

e

Figure 7.1: Scatter plot comparing the runtime (in seconds) of Ultimate and omegaVPLinc
on the Ultimate suite. Both axis feature a logarithmic scale. When a tool does not return an
answer within 1800 seconds (it runs out of time or memory) the data point is plotted on the
edge thereof (top edge for Ultimate, right edge for omegaVPLinc).

of each function W , C, R, U , W~, C~, R~ is bounded by 2O(n̂2)m2n2. Since each function W ,
C, R, U , W~, C~, R~ has n2 components it takes 2O(n̂2)m2n4 to compute ctxB(fA(X, Y, Z, U))
and ctxB~(rA(X,X ′, Y, Y ′, Z, Z ′)) given ctxB(X, Y, Z, U) and ctxB~(X,X ′, Y, Y ′, Z, Z ′). For all
k ∈ N, we have that ctxB~(rAk(~∅)) ⊆

(
℘(Q̂2)× ℘(Q̂2)

)6·|Q|2
. At worst the computation of line

2 adds exactly one element of ℘(Q̂2)× ℘(Q̂2) at each iteration step k to some entry of the
6 · |Q|2-dimensional vector ctxB~(rAk(~∅)), so that 6n222n̂2 is an upper bound on the number of
iterations needed to compute ctxB~(rA,Bm(~∅)). For X ′, Y ′ ⊆ ℘(Q̂2)× ℘(Q̂2) the time to check
X ′ v~ Y ′ is bounded by 2O(n̂2). The analogue holds for the Kleene iterates for the prefixes
and the qo v. It follows that lines 1 to 2 take at most 2O(n̂2)m2n3 time. For x ∈ ℘(Q̂2) the
time to compute the transitive closure x∗ is bounded by O(n̂8). Hence, the time to check
IncB(x, y1, y2) is bounded by O(n̂10). Since |ctxB(fAm(~∅))|, |ctxB~(rAm(~∅))| ≤ 22n̂2 the time to
execute lines 3 to 8 is bounded by 2O(n̂2)n.

7.8 Experiments
We implemented omegaVPLinc [27] , a Java prototype of the state-based algorithm and evalu-
ated it against Ultimate from Heizmann et al. [44] which decides inclusion via complementation,
intersection and emptiness check.2

2We excluded FADecider [38] from our evaluation because it returned 22 false positive answers on a
randomly chosen subset of 50 from our 286 benchmarks. Counterexamples to inclusion for these benchmarks
were validated with Ultimate. The problem has been reported.

76

Chapter 7. INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES

Benchmarks. Our experiments use two sets of benchmarks. The first stems from [38]
and consists of 5 queries Lω(A) ⊆ Lω(B) given A and B. We first translated those VPA
into the AutomataScript language that Ultimate and omegaVPLinc can use and then we
minimized them with Ultimate. The second set of benchmarks consists of 281 instances of
VPA A,B1,B2, . . . ,Bn for which we run the query Lω(A) ⊆ ⋃n

i=1 L
ω(Bi). These VPA were

computed by Ultimate from randomly selected tasks in SV-COMP (Software Verification
Competition) termination category. We used Ultimate to compute the unions of B1, . . . ,Bn
and then minimize the result before running each query.

Experimental Setup. We ran our experiment in Debian/GNU Linux 11 (Bullseye) 64bit,
running on a server with 20GB of RAM and 2 Xeon E5640 2.6GHz CPUs. We used Ultimate
version 0.2.1, with openJDK 11.0.13, whereas omegaVPLinc uses openJDK 17.0.1. Maximal
heap size for both programs was set to 6 GB and they were given a timeout of 30 minutes
(or, equivalently, 1800 seconds).

Results. Of the 5 benchmarks in the FADecider suite, omegaVPLinc is faster on 4 of them.
Our prototype times out on the remaining one, while Ultimate runs out of memory. Of the
281 benchmarks in the Ultimate suite, omegaVPLinc correctly returns an answer on 253
(165 ⊆ and 88 *), times out on 27 and runs out of memory on 1. Ultimate, however, only
terminates on 142 benchmarks, running out of memory on the remaining 139 (the red data
points on the top edge in Figure 7.1). There are 7 benchmarks for which Ultimate terminates,
but omegaVPLinc doesn’t (the data points on the right edge but not the top one), whereas
there are 118 benchmarks for which omegaVPLinc terminates, but Ultimate doesn’t (the red
data points on the top edge but not the right one). Of the 135 benchmarks on which both
tools terminate, omegaVPLinc is faster than Ultimate on 123 (data points touching no edges
and above the diagonal). Moreover omegaVPLinc and Ultimate coincide on whether inclusion
holds (98) or not (37). This empirical evaluation suggests that omegaVPLinc scales up better
than Ultimate on both of these benchmark sets.

77

Chapter 8

A MYHILL-NERODE THEOREM
FOR TIMED AUTOMATA WITH
INTEGER RESETS

We consider the subclass of timed automata with integer resets, which is known to have
good automata-theoretic properties and is also useful for practical modeling. We present
a Nerode-style equivalence for this class that depends on a constant K and leads to the
construction of a canonical one-clock integer-reset timed automaton with maximum constant
K.

8.1 Languages with Integer Resets
We define the class of One-Clock Integer Reset Timed Automata (1-IRTA) where transitions
reset the clock provided its value is an integer. Formally, we say that a 1-TA A = (Q, qI , T, F)
is a 1-IRTA when for every resetting transition (q, q′, a, φ, 0) ∈ T the clock constraint φ is of
the form x = m, or, equivalently, JφK ∈ N. A deterministic 1-IRTA is called a 1-IRDTA.

Example 24. The 1-TAs in Figures 1.4, 1.5 and 8.1 are 1-IRTAs.

The definition of a run of a 1-IRTA simply follows from that of 1-TA. However, due to the
special syntax, we can identify points in the word where the resets can potentially happen.
The next definition makes this idea precise.

Definition 8.1.1. Given d = t1 · · · tn ∈ T and a K ∈ N, we define the longest sequence of
indices sd = {0 = i0 < i1 < . . . < ip ≤ n} such that for every j ∈ {0, . . . , p − 1} the value∑i(j+1)
i=(ij)+1 ti is an integer between 0 and K. We refer to the set of positions of the sequence sd

as the integral positions of d. Note that sd is never empty since it always contains 0. Next,
define

cK(d) =
n∑

i=(ip)+1
ti .

The definitions of integral positions and the function cK apply equally to timed words by

79

Kyveli Doveri

start

a, 0 < x < 1, 1

a, x = 1, 0

a, 0 < x < 1, 1

a, 1 < x, 1

a, 1 < x, 1

a, 1 < x, 1

a, x = 0, 0

a, x = 1, 0

Figure 8.1: A strict 1-IRTA with alphabet Σ = {a} accepting M = {u ∈ TΣ∗ | c1(u) = 0}.

taking the timestamp of the timed word.

Example 25. For K = 1 and u = (0.2 · a)(0.8 · a)(0.2 · a) we have su = {0 < 2} and
c1(u) = 0.2. For K = 1 and u′ = (1.2 · a)(0.8 · a)(0.2 · a) we have su′ = {0} and c1(u′) = 2.2.
For K = 2, we have su′ = {0 < 2} and c2(u′) = 0.2. Notice that the sequence su′ depends
on the constant K (we do not explicitly add K to the notation for simplicity, as in our later
usage, K will be clear from the context).

Consider a run of a 1-IRTA on a word u = (t1 · a1) · · · (tn · an) ∈ TΣ∗ and factor it according
to su = {0 = i0 < i1 < . . . < ip ≤ n}:

(qi0 , νi0)
t(i0)+1,θ(i0)+1···ti1 ,θi1−−−−−−−−−−−−→ (qi1 , νi1)

t(i1)+1,θ(i1)+1···ti2 ,θi2−−−−−−−−−−−−→ (qi2νi2) −→ · · ·

−→ (qip , νip)
t(ip)+1,θ(ip)+1···tn,θn

−−−−−−−−−−−−→ (qn, νn)

At each position ij with j ∈ {0, . . . , p}, νij ∈ N and, moreover, νij = 0 when rij = 0. Note
that when ip = n then cK(u) = 0, otherwise cK(u) can be any real value except an integer
value between 0 and K, i.e. cK(u) ∈ R≥0 \ {0, . . . , K}.

In Definition 8.1.1 we identified the integral positions at which a 1-IRTA could potentially
reset the clock. In the following, we recall a subclass of 1-IRTAs called strict 1-IRTAs [10]
where every transition with an equality guard φ (φ is of the form x = m or, equivalently,
JφK ∈ N) must reset the clock. This feature, along with a special requirement on guards forces
a reset on every position given by su for a word u.

8.1.1 The subclass of strict 1-IRTA
A 1-IRTA is said to be strict if each of its transitions (q, q′, a, φ, s) satisfies the following
conditions:

1. the clock constraint of the guard φ is either x = m, m < x ∧ x < m+ 1, or K < x,

2. the clock constraint of the guard φ is an equality iff s = 0.

Example 26. The 1-TA in Figures 1.5 and 8.1 are strict 1-IRTAs. The 1-TA in Figure 1.4
is not a strict 1-IRTA since the transition qI

a,x=1,1−−−−→ q does not reset the clock.

80

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

A run of a strict 1-IRTA on a word u can be factored similarly as explained for a general
1-IRTA, however now, every rij will be a reset transition: notice that we require each transition
to be guarded using constraints of a special form, either x = m or m < x < m+ 1 or K < x;
therefore, the transition reading (ti1 , ai1) will necessarily have an equality guard x = m forcing
a reset, similarly at i2 and so on. Therefore, the sequence su identifies the exact reset points
in the word, no matter which strict 1-IRTA reads it. The quantity cK(u) gives the value
of the clock on reading u by any strict 1-IRTA. This input-determinism is a fundamental
property of strict 1-IRTAs that helps in the Myhill-Nerode characterization that we present
in the later sections.

The question now is how expressive are strict 1-IRTAs. As shown by the proposition below,
every language definable by a 1-IRTA is also definable by a strict 1-IRTA. Therefore, we
could simply consider strict 1-IRTAs instead of 1-IRTAs. Even though a proof of this equi-
expressivity theorem is given in [10, Theorem 1] we provide one in appendix for the sake of
being self-contained.

Proposition 25 (see also Theorem 1 [10]). A language accepted by a (deterministic) 1-IRTA
is also accepted by a (deterministic) strict 1-IRTA with the same greatest constant in guards.

Proof. Given a 1-TA we can always assume that its transitions are of the form given in item
1. We call a transition of the form (q, q′, a, x = m, 1) a bad transition. Next, we prove by
induction on the number of bad transitions that the language of any (deterministic) 1-TA with
transitions as in item 1 is also accepted by a (deterministic) 1-TA with no bad transitions.
Let A = (Q, qI , T, F) be a 1-TA with transitions as in item 1 and assume it has n+ 1 bad
transitions. Let θ = (p, q, a, x = m, 1) ∈ T be a bad transition such that the constant m is
the largest among all the constants associated with bad transitions.

For a guard φ with a constant greater than m, define

modify(φ) =

x = c−m if φ is x = c

c−m < x ∧ x < c−m+ 1 if φ is c < x ∧ x < c+ 1
K −m < x else (φ is K < x) .

Define the 1-TA A as follows: The set of states is given by Q and a copy Q of Q and the
initial state is qI ∈ Q. The transitions are given by

1. the transitions of T \ {θ},

2. the transition (p, q, a, x = m, 0),

3. for every non bad transition η = (s, s′, a, φ, 1) ∈ T the transition η = (s, s′, a,modify(φ), 1),

4. for every bad transition η = (s, s′, a, x = m, 1) ∈ T of guard x = m (including the
transition θ) the transition η = (s, s′, a, x = 0, 0),

5. for every resetting transition (s, s′, a, φ, 0) ∈ T the transition (s, s′, a,modify(φ), 0).

The set of final states is F ∪ {f ∈ Q | f ∈ F}. Note that if A is deterministic then A is also
deterministic. All the bad transitions of A are in T \ {θ}, thus A has n bad transitions. By
induction hypothesis it is accepted by a 1-TA without any bad transitions. It remains to show

81

Kyveli Doveri

that L(A) = L(A). The runs of A that don’t use the transition θ correspond to the runs of A
that don’t use the transition of item 2. A simulates a run of A that uses θ as follows: Until
the first occurrence of θ the run is simulated by the transitions in item 1. Every occurrence
of θ in the run is simulated either by the transition in item 2 (in particular this is the case for
the first occurrence of θ) or by the “good” version of θ given in item 4. After an occurrence
of θ the automaton A uses the transitions of items 3 and 4 until a resetting transition occurs.
Such a resetting transition is simulated with the corresponding transition from item 5 which
forces A back to the states of Q until a next occurrence of θ.

8.2 Strict 1-IRDTA from Equivalence on Timed Words
We now start our search for a Nerode-style equivalence for timed languages with integer resets.
In this section, we define a strict 1-IRDTA from an equivalence on timed words to accept a
given language. As expected, we need some conditions on the equivalence.

Definition 8.2.1. Given a constant K ∈ N, an equivalence relation ≈ ⊆ TΣ∗ × TΣ∗ is
K-monotonic when

(a) u ≈ v =⇒ cK(u) ≡K cK(v),

(b) u ≈ v =⇒ ∀a ∈ Σ,∀t ∈ R≥0, ∃t′ ∈ [t]≡K , u(t · a) ≈ v(t′ · a),

(c) ∀u ∈ TΣ∗,∀t, t′ ∈ R≥0, cK(u) + t ≡K cK(u) + t′ =⇒ u(t · a) ≈ u(t′ · a) for all a ∈ Σ.

Here is some intuition behind the definition. When we build the strict 1-IRDTA with the
equivalence classes as states, we want every word in an equivalence class [u]≈ to take an
outgoing transition along with u. If we do not impose (a), then there could be two words
u, v with say cK(u) = 0.5 and cK(v) = 0 within the same class. Then, an outgoing transition
with x = 0 is taken only by v and not u. This is an unwanted situation. Condition (b) says
that if u on a “letter” jumps to a class, v on a “similar letter” can jump to the same class.
Finally, the third condition (c) imposes some kind of completeness w.r.t. guards: every letter
obtained by a time delay that satisfies a particular clock constraint should end up in the same
equivalence class.

We now move on to the actual strict 1-IRDTA construction. Given a K-monotonic and finite
index equivalence ≈ ⊆ TΣ∗ × TΣ∗ and, moreover, a language L ⊆ TΣ∗ we define a 1-TA AL≈
as follows. The set of states is [TΣ∗]≈, and the initial state is [ε]≈. To define the transitions
we introduce the following notations.

• For a class [t]≡K ∈ [R≥0]≡K , we define the guard φ[t]≡K
as

φ[t]≡K
=

x = t if t ≤ K ∧ t ∈ N
btc < x ∧ x < btc+ 1 if t < K ∧ t /∈ N
K < x if K < t .

• For a class [v]≈ ∈ [TΣ∗]≈ define s[v]≈ ∈ {0, 1} as 0 if cK(v) = 0 and 1 otherwise.

It is straightforward that φ[t]≡K
depends solely on the equivalence class [t]≡K i.e., t ≡K t′ =⇒

82

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

φ[t]≡K
= φ[t′]≡K

. Regarding s[v]≈ the same holds due to the K-monotonicity of ≈, which
guarantees that if v ≈ v′, then cK(v) ≡K cK(v′).

In turn, we define a transition ([u]≈, [v]≈, a, φ[x]≡K
, s[v]≈) ∈ T≈ iff there is t ∈ R≥0 such that

u(t · a) ≈ v and cK(u) + t ≡K x. As explained earlier, this transition is independent of the
representatives chosen for the classes [v]≈ and [x]≡K . Next we show that it is also independent
of the representative chosen for [u]≈.

Let u ≈ u′. Since ≈ is K-monotonic for every t ∈ R≥0 there is t′ ∈ [t]≡K such that u(t · a) ≈
u′(t′ · a). By transitivity of ≈, we get u′(t′ · a) ≈ v. It remains to show that cK(u′) + t′ ≡K x.
By K-monotonicity we have: cK(u) ≡K cK(u′) and cK(u(t · a)) ≡K cK(u′(t′ · a)). By our
choice of t′, we have t ≡K t′. This implies cK(u) + t ≡K cK(u′) + t′. By transitivity of ≡K , we
get cK(u′) + t′ ≡K x. Thus, ([u]≈, [v]≈, a, φ[x]≡K

, s[v]≈) and ([u′]≈, [v]≈, a, φ[x]≡K
, s[v]≈) coincide.

We conclude the definition AL≈ by giving the final states FL
≈ = {[u]≈ ∈ [TΣ∗]≈ | u ∈ L}. This

set is well defined when ≈ is L-preserving i.e., when u ≈ v =⇒ (u ∈ L ⇐⇒ v ∈ L). In
turn we define the 1-TA AL≈ = ([TΣ∗]≈, [ε]≈, T≈, FL

≈).

Proposition 26. Suppose ≈ is K-monotonic. Then AL≈ is a 1-IRDTA. Moreover, for every
timed word u, ([ε]≈, 0) u ([u]≈, cK(u)).

Proof. By construction AL≈ is a strict 1-IRTA. We will show that it is also deterministic.
Suppose there are two transitions [u]≈

a,φ,r−−→ [u1]≈ and [u]≈
a,φ,r−−→ [u2]≈ for u1 6≈ u2. By

definition of the transitions, there are t1, t2 ∈ R≥0 (corresponding to the two transitions) such
that (1) cK(u) + t1 and cK(u) + t2 satisfy the same φ, and (2) u(t1 · a) ≈ u1 and u(t2 · a) ≈ u2.
Point (1) will imply cK(u) + t1 ≡K cK(u) + t2. By condition (c) of K-monotonicity, we have
u(t1 · a) ≈ u(t2 · a). From point (2), we get u1 ≈ u2, contradicting u1 6≈ u2.

By induction on the length of the timed words we show that for every u ∈ TΣ∗, ([ε]≈, 0) u

([u]≈, cK(u)). Let u(t·a) ∈ TΣ∗. By induction hypothesis ([ε]≈, 0) u ([u]≈, cK(u)). Moreover,
by definition of AL≈, there is a transition ([u]≈, [uat]≈, a, φ[cK(u)+t]≡K

, s[uat]≈) ∈ T≈. Since
cK(u(t · a)) = (cK(u) + t)s[u(t·a)]≈ we deduce that ([ε]≈, 0) u ([u]≈, cK(u)) (t·a) ([u(t ·
a)]≈, cK(u(t · a))).

Corollary 1. Let ≈ be K-monotonic, L-preserving and of finite index. Then L = L(AL≈).

Proof. From Proposition 26, a word is in L iff it has an accepting run.

8.3 A Myhill-Nerode Theorem for Languages with In-
teger Resets

In the previous section, we have established generic conditions that we require out of an
equivalence in order to obtain an equivalent strict 1-IRTA from it. In this section, we will
present a concrete such equivalence: given a language L definable by a 1-IRTA and a constant
K ∈ N we define a syntactic equivalence ≈L,K ⊆ TΣ∗ × TΣ∗ for L. By syntactic we mean
that this equivalence is independent of a specific representation of L. We then show that

83

Kyveli Doveri

when the constant K is sufficiently large, ≈L,K is the coarsest L-preserving and K-monotonic
equivalence. As a consequence of this, we are able to define a canonical 1-IRDTA for L by
taking the constant K to be minimal among the greatest constants of 1-IRDTAs accepting L.

The idea for defining ≈L,K is to identify two words u and u′ whenever their clock values cK(u)
and cK(u′) are region equivalent and the residuals u−1L and u′−1L are the same modulo some
rescaling w.r.t. cK(u) and cK(u′).

To achieve this, we define a rescaling function τu,v : T→ T on timestamps. Expectedly, we
require τu,v to be a length preserving bijection. This function τu,v is then extended to timed
words by letting τu,v((t1 · a1) . . . (tn · an)) = (t′1 · a1) . . . (t′n · an) where t′1 . . . t′n = τu,v(t1 . . . tn).
Hence, we will deem u and u′ equivalent iff cK(u) ≡K cK(u′) and τu,v(u−1L) = u′−1L.

8.3.1 Auxiliary Definitions
Identifying Timed Words. We extend the region equivalence to timestamps of any length
and define the equivalence ≡K ⊆ T× T for timestamps, which plays a crucial role in our
analysis of timed languages with integer resets.

Formally, for timestamps d = t1 · · · tn and d′ = t′1 · · · t′n, both of the same length n, we
have d ≡K d′ iff every 1-IRTA with greatest constant less than or equal to K that accepts
(t1 · a1) · · · (tn · an) also accepts (t′1 · a1) · · · (t′n · an), and vice versa. Alternatively, we have
d ≡K d′ iff the following conditions hold:

• the integral positions of d and d′ coincide: sd = sd′
where sd = {0 = i0 < i1 < . . . < ip ≤ n} (see Definition 8.1.1),

• for every j ∈ {0, . . . , p− 1} and every s ∈ {(ij) + 1, . . . , i(j+1)},
t(ij)+1 + · · ·+ ts ≡K t′(ij)+1 + · · ·+ t′s and, moreover, if ip < n then the following holds
t(ip)+1 + · · ·+ ts′ ≡K t′(ip)+1 + · · ·+ t′s′ for all s′ ∈ {(ip) + 1, . . . , n}.

It is an easy exercise to check that for timestamps of length one this definition coincides with
the region equivalence on R≥0.

We extend ≡K to timed words by defining for u = (t1 ·a1) . . . (tn ·an) and u′ = (t′1 ·b1) . . . (t′n ·bn),
u ≡K u′ iff a1 . . . an = b′1 . . . b

′
n and t1 . . . tn ≡K t′1 . . . t

′
n.

Identifying Residual Languages. In the following we fix x, x′ ∈ R≥0 such that x ≡K x′

and define a length preserving bijection τx,x′ : T→ T verifying the following properties

1. for every t, t′ ∈ T there exists z ∈ T such that τx,x′(tt′) = τ(t)z,

2. for every t ∈ T, x′τx,x′(t) ≡K xt.

Before we provide the construction of the τx,x′ function, we give an illustrative example.
Assume K = 1, and 0 < x, x′ < 1. Let us look at τx,x′ for timestamps y ∈ R≥0 of length 1.
To satisfy property 2, we require x+ y ≡1 x′ + τx,x′(y): that is, x+ y < 1 ⇐⇒ x′ + y′ < 1
and x + y = 1 ⇐⇒ x′ + y′ = 1. One can achieve this by rescaling the interval 1 − x to
1− x′. The picture below depicts the situation for a y smaller than 1. In this case, we can set
y′ = (1−x′)

(1−x) y. When y ≥ 1, we can set y′ to have the same integral part as y, and apply the

84

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

rescaling for the fractional parts.
0 1x y

1− x

0 1
x′ y′

1− x′

We will now give the general construction of τx,x′ . We define τx,x′ inductively on the length of
the timestamps. Set τx,x′(ε) = ε. Consider n+ 1 length timestamps t1t2 . . . tntn+1. To satisfy
property 1, we require τx,x′(t1t2 . . . tntn+1) to be of the form τx,x′(t1t2 . . . tn)z where z ∈ R≥0.
As mentioned in the example above, we will set the integral part of z to be the same as
that of tn+1. For the fractional part, we will do the rescaling. More precisely, we will define
a bijection ft1···tn : [0, 1) → [0, 1) so that we can set τx,x′(t1t2 . . . tntn+1) = τx,x′(t1 . . . tn)t′n+1
such that bt′n+1c = btn+1c and frac(t′n+1) = ft1···tn(frac(tn+1)). It now remains to define this
bijection ft1···tn .

Assume we have x′τx,x′(t1t2 . . . tn) ≡K xt1t2 . . . tn. We want τx,x′ to satisfy property 1 for
t1t2 . . . tn+1, that is x′τx,x′(t1t2 . . . tn)t′n+1 ≡K xt1t2 . . . tntn+1. Since x′τx,x′(t1t2 . . . tn) ≡K
xt1t2 . . . tn by our inductive assumption, the timestamps xt1 · · · tn and x′τx,x′(t1t2 . . . tn) have
the same integral positions given by the sequence s = {0 = i0 < i1 < . . . < ip ≤ n} (Def. 8.1.1).
Hence, according to the characterization of the equivalence classes of ≡K given in the first
part of Section 8.3.1, it suffices to show the following property:

t(ip)+1 + · · ·+ tn + tn+1 ≡K t′(ip)+1 + · · ·+ t′n + t′n+1 where t′1 . . . t′n = τx,x′(t1 . . . tn) .

If ip = n then we can take t′n+1 = tn+1. If ip < n then this property is satisfied if we take
ft1···tn : t ∈ [0, 1) 7→

1−frac(t′(ip)+1+···+t′n)
1−frac(t(ip)+1+···+tn)t.

Note that when x, x′ ∈ {0, . . . , K}, τx,x′ is the identity function. Also we have τx′,x = τ−1
x,x′ .

Lemma 10. Let A be a 1-IRTA with greatest constant less than or equal to K and x, x′ ∈ R≥0
such that x ≡K x′. For every state q of A we have τx,x′(L(q, x)) = L(q, x′).

Proof. Let A = (Q, qI , T, F) be the 1-IRTA with greatest constant less than or equal to K,
with q ∈ Q. Let x, x′ such that x ≡K x′. If x ∈ {0, 1, . . . , K}, then x = x′ and the lemma is
trivial since τx,x′ is the identity function. Assume x 6= x′, and therefore neither of them is an
integer smaller than or equal to K.

Define A to be the 1-TA obtained by adding a new state q /∈ Q to A and the transition
(q, q, a, φ[x]≡K

, 1). A is a 1-IRTA and for every w ∈ TΣ∗ and y ∈ [x]≡K we have w ∈
L(q, y) ⇐⇒ (y · a)w ∈ L(q, 0). Pick w ∈ L(q, x). We will show that τx,x′(w) ∈ L(q, x′). This
will establish τx,x′(L(q, x)) ⊆ L(q, x′). To deduce the reverse inclusion, we can use the fact
that L(q, x) = τ−1

x,x′(L(q, x′)) and apply a symmetric argument.

To show τx,x′(w) ∈ L(q, x′). Notice that (x ·a)w ∈ L(q, 0). We have (x ·a)w ≡K (x′ ·a)τx,x′(w)
by definition of τx,x′ . Thus, by definition of≡K we have (x·a)w ∈ L(q, 0) ⇐⇒ (x′·a)τx,x′(w) ∈
L(q, 0). Overall, w ∈ L(q, x) ⇐⇒ (x · a)w ∈ L(q, 0) ⇐⇒ (x′ · a)τx,x′(w) ∈ L(q, 0) ⇐⇒
τx,x′(w) ∈ L(q, x′).

Lemma 11. Assume x ≡K x′, c ∈ R≥0 and d ∈ T. Then cK(xc) ≡K cK(x′τx,x′(c)) and
τx,x′(cd) = τx,x′(c)τ(d) where τ = τcK(xc),cK(x′τx,x′ (c)).

85

Kyveli Doveri

Proof. Let x ≡K x′ and c ∈ R≥0. By the property 2 of τx,x′ we have cK(xc) ≡K cK(x′τx,x′(c)).
By induction on the length of the timestamps we show that for every d ∈ T we have
τx,x′(cd) = τx,x′(c)τy,y′(d) where y = cK(xc) and y′ = cK(x′τx,x′(c)). It is straightforward
for d = ε. By the property 1 for τx,x′ , τx,x′(cdt) = τx,x′(cd)t′ for some t′ ∈ R≥0. Thus,
by the induction hypothesis, τx,x′(cdt) = τx,x′(c)τy,y′(d)t′. Similarly, by the property 1 for
τy,y′ , τx,x′(c)τy,y′(dt) = τx,x′(c)τy,y′(d)t′′ for some t′′ ∈ R≥0. Let ip be the last term of the
sequence sxcd and, i′p be the last term of the sequence syd. It is an easy exercise to check that
ip = 3 ⇐⇒ i′p = 2, ip = 2 ⇐⇒ i′p = 1 and ip ∈ {0, 1} ⇐⇒ i′p = 0, and, in any of these
cases t′ = t′′.

8.3.2 Syntactic Equivalence
Given L and K we are now in position to define a syntactic equivalence ≈L,K ⊆ TΣ∗ × TΣ∗.

To simplify our notations, for any u, v ∈ TΣ∗ such that cK(u) ≡K cK(v), we write τu,v for the
bijection τcK(u),cK(v).

Definition 8.3.1. We define u ≈L,K v iff cK(u) ≡K cK(v) and τu,v(u−1L) = v−1L.

Note that the equivalence ≈L,K is L-preserving. Assume u ≈L,K v. We have u ∈ L ⇐⇒ ε ∈
u−1L and ε ∈ u−1L ⇐⇒ ε ∈ v−1L since τu,v(ε) = ε. Thus, u ∈ L ⇐⇒ v ∈ L.

Proposition 27. For every L ⊆ TΣ∗ and K ∈ N the equivalence ≈L,K verifies the K-
monotonicity (a) and (b).

Proof. TheK-monotonicity (a) holds by definition of ≈L,K . Next we show theK-monotonicity
(b). Assume u ≈L,K v. Let a ∈ Σ and x ∈ R≥0. By definition of ≈L,K we have cK(u) ≡K
cK(v). We use Lemma 11. We have cK(u(x ·a)) ≡K cK(v(τu,v(x) ·a)). Let τ = τu(x·a),v(τu,v(x)·a).
We have:

τ(w) ∈ τ((u(x · a))−1L)
⇐⇒ u(x · a)w ∈ L ⇐⇒ τu,v((x · a)w) ∈ τu,v(u−1L) [since τ is a bijection]
⇐⇒ (τu,v(x) · a)τ(w) ∈ τu,v(u−1L) [by Lemma 11]
⇐⇒ (τu,v(x) · a)τ(w) ∈ v−1L [since τu,v(u−1L) = v−1L]
⇐⇒ τ(w) ∈ (v(τu,v(x) · a)−1L .

Hence, τ((u(x · a))−1L) = (v(τu,v(x) · a))−1L. Thus, u(x · a) ≈L,K v(τu,v(x) · a). Since
τu,v(x) ≡K x (by definition of τu,v) we conclude that ≈L,K verifies the (b).

The next theorem makes use of the above equivalence to present the Myhill-Nerode style
characterization for IRTA languages.

Theorem 14.

• L ⊆ TΣ∗ is a language definable by a 1-IRTA if and only if there is a constant K ∈ N
such that ≈L,K is K-monotonic and has finite index.

• ≈L,K is coarser than any K-monotonic and L-preserving equivalence.

86

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

Proof.

• Since ≈L,K is L-preserving, Corollary 1 establishes the “if” part of the proof. By
Proposition 27, ≈L,K always verifies the K-monotonicity (a) and (b), no matter which
L we choose. Next, we show that when L ⊆ TΣ∗ is definable by a deterministic 1-IRTA
with greatest constant less than or equal to K then ≈L,K has finite index and also
verifies the K-monotonicity (c). We fix a strict 1-IRDTA A with greatest constant less
than or equal to K that accepts L, which exists by Proposition 25.

– We show K-monotonicity (c). Let u ∈ TΣ∗ and t, t′ ∈ R≥0 such that cK(u) + t ≡K
cK(u) + t′. We have cK(u(t · a)) ≡K cK(u(t′ · a)) for all a ∈ Σ. Let x = cK(u(t · a))
and x′ = cK(u(t′ · a)). Let q be the state of A reached by the word u(t · a). Since
cK(u) + t ≡K cK(u) + t′, we deduce that q is the state reached on the word u(t′ · a)
as well. Hence, we have (u(t · a))−1L = L(q, x), and (u(t′ · a))−1L = L(q, x′). Since
x ≡K x′, by Lemma 10, we deduce that τx,x′((u(t · a))−1L) = (u(t′ · a))−1L. Thus,
u(t · a) ≈L,K u(t′ · a).

– Finally ,we show that ≈L,K has finite index. From the automaton A we can define
a natural equivalence ≈A as follows: u ≈A v if cK(u) ≡K cK(v) and A reaches the
same (control) state on reading u and v from its initial configuration. It is easy
to see that the number of equivalence classes of ≈A is bounded by the number of
states of A multiplied by the number of K regions. We will now prove that ≈L,K
is coarser than ≈A, implying the finiteness of ≈L,K .

Suppose u ≈A v. Let cK(u) = x and cK(v) = x′, and let q be the state reached
by A on reading u and v. We have u−1L = L(q, x) and v−1L = L(q, x′). Since
x ≡K x′, Lemma 10 entails τx,x′(u−1L) = v−1L, thereby proving u ≈L,K v.

• To show the second part of the theorem we need the following preliminary result:

Claim 1. Let ≈ be K-monotonic. Then u ≈ v implies uw ≈ vτu,v(w) for all w ∈ TΣ∗.

Proof. By induction on the length of the words we show that for every w ∈ TΣ∗ we
have uw ≈ vτu,v(w). Since u ≈ v it is true for ε. Assume it holds for w ∈ TΣ∗ i.e.,
uw ≈ vτu,v(w). Let a ∈ Σ and x ∈ R≥0. We will show that uw(x · a) ≈ vτu,v(w(x · a)).
By the property 1 of τu,v there is y ∈ R≥0 such that τu,v(w(x · a)) = τu,v(w)(y · a).
From the property 2 of τu,v we deduce cK(uw(x · a)) ≡K cK(vτu,v(w)(y · a)). Since ≈
is K-monotonic there is x′ ∈ [y]≡K and uw(x′ · a) ≈ vτu,v(w)(y · a), thus cK(uw(x′ ·
a)) ≡K cK(vτu,v(w)(y · a)). Thus, by transitivity of ≡K we deduce cK(uw(x · a)) ≡K
cK(uw(x′ · a)). Since x′ ≡K y and y ≡K x (the last equivalence holds by definition of
τu,v) we have x ≡K x′. From cK(uw(x · a)) ≡K cK(uw(x′ · a)) and x ≡K x′ we deduce
that cK(uw) + x ≡K cK(uw) + x′ (if cK(uw(x · a)) ∈ R≥0 \ {0} it is straightforward,
otherwise we have cK(uw) + x ∈ N and cK(uw) + x′ ∈ N and we use that x ≡K x′).
Hence, by K-monotonicity, uw(x · a) ≈ uw(x′ · a). Finally, by transitivity of ≈ we find
that uw(x · a) ≈ vτu,v(w(x · a)).

Let ≈ be a K-monotonic and L-preserving equivalence. Assume u ≈ v. By K-
monotonicity, cK(u) ≡K cK(v). To prove that u ≈L,K v it remains to show that

87

Kyveli Doveri

τu,v(u−1L) = v−1L. We have:

τu,v(w) ∈ τu,v(u−1L) ⇐⇒ w ∈ u−1L [because τu,v is a bijection]
⇐⇒ uw ∈ L [by definition]
⇐⇒ vτu,v(w) ∈ L [by Claim 1 and L-preservation]
⇐⇒ τu,v(w) ∈ v−1L .

Assume L is definable by an 1-IRDTA with greatest constant less than or equal to K. The
proof of Theorem 14 shows that ≈L,K is a K-monotonic finite index equivalence. Since it is
also L-preserving we have L = L(AL≈L,K). In the rest of the section, we provide examples that
apply the above theorem.

Example 27. Consider the language L = {(x · a) | x ∈ N}. It can intuitively be seen that this
language cannot be accepted by any IRTA. We will now show that the right-hand-side of the
characterization does not hold. There is no K ∈ N such that ≈L,K verifies the K-monotonicity
(c): For every K ∈ N we have cK(ε) +K + 1 ≡K cK(ε) +K + 1.1. Since (K + 1 · a) ∈ L and
(K + 1.1 · a) /∈ L, by L-preservation, (K + 1 · a) 6≈L,K (K + 1.1 · a). By Theorem 14, L is not
1-IRTA definable.

Example 28. Consider the language L = {(x · a)(1 · b) | 0 < x < 1}. This language is
accepted by a 1-TA that reads a on a guard 0 < x < 1, resets the clock x and reads b at x = 1.
This is clearly not an IRTA. We will once again see that K-monotonicity does not hold for
any K. For u = (0.2 · a), cK(u) + 1 ≡K cK(u) + 1.1 holds for every constant K ∈ N. Since
u(1 · b) ∈ L and u(1.1 · b) /∈ L, we have u(1 · b) 6≈L,K u(1.1 · b). Thus, there is no K such that
≈L,K verifies K-monotonicity (c). By Theorem 14, L is not definable by an 1-IRTA.

Example 29. Consider the language L = {(0 · a)n(0 · b)n | n ∈ N}. There is no K such
that ≈L,K has finite index, although ≈L,K is 0-monotonic: for a word u with 0 < c0(u), no
extension of u belongs to L and hence monotonicity (c) is trivially true; pick a word u with
c0(u) = 0, and let t, t′ such that c0(u) + t ≡0 c0(u) + t′. When t = 0, we have t′ = 0 and
monotonicity is trivial. Suppose 0 < t, t′. Then u(t · α) /∈ L and u(t′ · α) /∈ L for any letter α.
Once again, (c) holds.

We now argue the infinite index, similar to the case of untimed languages. For distinct
integers n and m we have ((0 · a)n)−1L 6= ((0 · a)m)−1L. Since τ0,0 is the identity we have
τ0,0(((0 · a)n)−1L) 6= ((0 · a)m)−1L. Thus, (0 · a)n 6≈L,K (0 · a)m.

Example 30. Consider the language M = {u ∈ TΣ∗ | c1(u) = 0} with alphabet Σ = {a}
which has the following residual languages. For u ∈ TΣ∗,

u−1M = M when c1(u) = 0, u−1M = {v ∈ TΣ∗ | σ(uv) = 1} when 0 < c1(u) < 1,
u−1M = ∅ when 1 < c1(u).

The equivalence classes for ≈M,1 are the following:

[ε]≈M,1 = M, [(3
2 · a)]≈M,1 = {u ∈ TΣ∗ | 1 < c1(u)}, [(1

2 · a)]≈M,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1}.

The 1-TA AM≈M,1 is depicted in Figure 8.1. In this automaton, [ε]≈M,1 serves as both the initial
and final state, [(3

2 · a)]≈M,1 is the sink state, while [(1
2 · a)]≈M,1 is the rightmost state.

88

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

εstart

(1
2 · a)

(1 · a)(2 · a)

(1·a)(1
2 ·a)

a, 1 < x, 1

a, x = 1, 0

a, 0 < x < 1, 1

a, x = 0, 0

a, x
= 1, 0a, 1 < x, 1

a, 0 < x < 1, 1

a, 1 < x, 1
a, x = 0, 0

a, 0 < x < 1, 1

a, 1 < x, 1

a, 1 < x, 1

a, 0 < x < 1, 1

Figure 8.2: A strict 1-IRDTA AL1
≈L,1 accepting L1 = {u ∈ TΣ∗ | σ(u) = 1}.

Example 31. Consider the language L1 = {u ∈ TΣ∗ | σ(u) = 1} given in Figure 8.2. Its
residual languages are the following. For u ∈ TΣ∗,

u−1L1 = ∅ when 1 < σ(u), u−1L1 = {v ∈ TΣ∗ | σ(v) = 0} when σ(u) = 1,
u−1L1 = L1 when σ(u) = 0, u−1L1 = {v ∈ TΣ∗ | σ(u) + σ(v) = 1} when 0 < σ(u) < 1.

The strict 1-IRDTA AL1
≈L1,1 is depicted in Figure 8.2 and its equivalence classes for ≈L1,1 are:

[(1 · a)]≈L1,1 = L1, [(1 · a)(1
2 · a)]≈L1,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1 ∧ 1 < σ(u)},

[ε]≈L1,1 = {u ∈ TΣ∗ | σ(u) = 0}, [(1
2 · a)]≈L1,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1 ∧ 0 < σ(u) < 1},

[(2 · a)]≈L1,1 = {u ∈ TΣ∗ | 1 < c1(u)}.

Example 32. As a last example, consider L = {(t1 · a)(t2 · b) | t1 = 0 or t1 ≥ 1, and t2 ≥ 0}.
This language can be recognized by a 1-IRTA with greatest constant 1. Let u = (0 · a) and
v = (2 · a). We would like to see the relation between these words for different constants K = 1
and K = 2. Notice that c2(u) = c2(v) = 0 and the residuals u−1L and v−1L are identical.
Therefore, u ≈L,2 v. However, c1(u) = 0, but c1(v) = 2 and therefore u 6≈L,1 v. Therefore,
≈L,2 is not a refinement of ≈L,1. The example indicates that if we have two constants K1, K2
such that ≈L,K1 and ≈L,K2 are both monotonic and have finite index, a smaller constant does
not mean a coarser equivalence.

8.4 Effectively Computing AL≈L,K
In this section we show that given a 1-IRDTA with greatest constant less than or equal to K
accepting L we can effectively compute AL≈L,K . No matter the 1-IRDTA we start from, as long
as it has greatest constant less than or equal to K, we get the same automaton AL≈L,K . It is
therefore a canonical automaton for L, for a given constant K. However, it is not necessarily
the canonical automaton AL≈L,KL

of L defined in the previous section.

Our goal is to compute a finite set of representatives covering all the equivalence classes
of ≈L,K . The representatives we choose will have rational timestamps. We start with a

89

Kyveli Doveri

preliminary notion. We say that an equivalence ≈ ⊆ TΣ∗ × TΣ∗ is decidable when given two
timed words u, v ∈ TΣ∗ with rational timestamps we can decide whether u ≈ v.

Proposition 28. If A is a 1-IRDTA with greatest constant less than or equal to K then
≈L(A),K is decidable.

Proof. We show that given u, v ∈ TΣ∗ with rational timestamps, we can decide u ≈L(A),K v.
Since the construction of the proof of Proposition 25 does not change the constant K, we can
assume that A is a strict 1-IRDTA. Let (q, cK(u)) and (q′, cK(v)) be the two configurations
such that (qI , 0) u (q, cK(u)) and (qI , 0) v (q′, cK(v)). By Lemma 10, τu,v(L(q, cK(u)) =
L(q, cK(v)). Thus, u ≈L(A),K v if and only if cK(u) ≡K cK(v) and L(q, cK(v)) = L(q′, cK(v)).
The first condition is easy. We focus on deciding L(q, cK(v)) = L(q′, cK(v)). Checking equality
of 1-IRTA is decidable, since they can be determinized. The extra difficulty here is that we
want to look at words that start with clock value cK(v). Below, we reduce it to checking
equality of IRTA languages, in the usual sense.

Add states q and q′ in A, and transitions (q, q, a, φ[cK(v)]≡K
, 1) and (q′, q′, a, φ[cK(v)]≡K

, 1). We
claim that L(q, cK(v)) = L(q′, cK(v)) iff L(q, 0) = L(q′, 0). It is straightforward to show that
L(q, 0) = L(q′, 0) =⇒ L(q, cK(v)) = L(q′, cK(v)). Next, we show the converse.

Assume L(q, cK(v)) = L(q′, cK(v)) and let x = cK(v). Any word u ∈ L(q, 0) is of the form
u = (y · a)w for some y ≡K x. Consider the bijection τy,x. By property 2 for τy,x we have
(x · a)τy,x(w) ≡K (y · a)w. By definition of ≡K , a 1-IRTA with greatest constant at most
K accepts (x · a)τy,x(w) iff it accepts (y · a)w. Therefore, we have (x · a)τy,x(w) ∈ L(q, 0).
Hence, τy,x(w) ∈ L(q, x). The hypothesis L(q, x) = L(q′, x) implies τy,x(w) ∈ L(q′, x). Hence,
(x · a)τy,x(w) ∈ L(q′, 0). Once again, since (x · a)τy,x(w) ≡K (y · a)w, we get (y · a)w ∈
L(q′, 0).

Proposition 29. If ≈ is K-monotonic, decidable and has finite index then we can effectively
compute a set of representatives for [TΣ∗]≈.

Proof. Given a finite subset Y ⊆ Q≥0 of representatives for [R≥0]≡K , define the function
f : ℘(TΣ∗)→ ℘(TΣ∗) by

f(X) = {w(tw,y · a) ∈ TΣ∗ | w ∈ X, a ∈ Σ, y ∈ Y, ∃t ∈ R≥0, cK(w) + t ≡K y} ∪ {ε} ,

where tw,y = max(0, y − cK(w)).

Next we show that a set of representatives for [TΣ∗]≈ is given by the iterate fn(∅) with least
n s.t. [fn+1(∅)]≈ = [fn(∅)]≈ and that we can compute this iterate.

• Because ≈ has finite index there exists n ∈ N such that [fn+1(∅)]≈ = [fn(∅)]≈. Given a
finite set X of timed words with rational timestamps we can compute f(X), thereby we
can compute each iterate of f . For every m ∈ N we have fm(∅) ⊆ fm+1(∅). Thus, to
decide [fm+1(∅)]≈ = [fm(∅)]≈ it suffices to check [fm+1(∅)]≈ ⊆ [fm(∅)]≈. This inclusion
translates to checking ∀x ∈ fm+1(∅), ∃y ∈ fm(∅), x ≈ y. Since fn(∅) is a finite set
of rational timed words and ≈ is decidable, we can decide this last check, thus also
[fm+1(∅)]≈ = [fm(∅)]≈.

90

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

• Next, we show by induction on the length of the words, that fn(∅) is a set of rep-
resentatives for [TΣ∗]≈ i.e., for every u ∈ TΣ∗ there is v ∈ fn(∅) such that u ≈ v.
It is true for ε since it belongs in fn(∅). Let w ∈ TΣ∗, a ∈ Σ and t ∈ R≥0. As an
induction hypothesis assume there is w′ ∈ fn(∅) such that w ≈ w′. We now look
at a one-step extension w(t · a). By K-monotonicity (b) there is t′ ∈ R≥0 such that
w(t · a) ≈ w′(t′ · a). Since Y is a set of representatives for [R≥0]≡K , there is y ∈ Y such
that cK(w′) + t′ ≡K y. It is an easy exercise to check that, since cK(w′) + t′ ≡K y, we
also have cK(w′) + tw′,y ≡K y. Hence, by K-monotonicity (c), w′(t′ · a) ≈ w′(tw′,y · a).
Thus, by transitivity w(t · a) ≈ w′(tw′,y · a).

If C is a 1-IRDTA with greatest constant less than or equal to K then ≈L(C),K is K-monotonic,
decidable and has finite index (Theorem 14 and Proposition 28). Thus, by Proposition 29 we
can compute a set of representatives for [TΣ∗]≈L(C),K . Completing the construction of AL(C)

≈L(C),K

is straightforward, and we can readily compute the set of final states, as membership in L(C)
of timed word with rational timestamps is decidable.

8.5 Languages with No Resets
In this section we consider the subclass of 1-TA with transitions that never reset i.e., the class
of 1-TA with transitions in Q×Q× Σ× Φ× {1}. We denote this class by 1-NRTA. In this
context, where the clock is never reset, any run on a word u = (t1 · a1) . . . (tn · an), results in
the final clock value σ(u) = t1 + · · ·+ tn. A language L ⊆ TΣ∗ with no resets is a language
accepted by a 1-NRTA. The class of languages definable by 1-NRTAs is strictly included
in that of 1-IRTA. Strict inclusion is shown by M = {u ∈ TΣ∗ | c1(u) = 0}. The 1-TA in
Figure 1.4 is a 1-NRTA. Next, we adapt the reasoning of Sections 8.2 and 8.3 to establish
a canonical representation specific to this subclass. Essentially, to achieve this, we replace
cK(u) by σ(u) everywhere and prevent transitions of the canonical automaton from resetting.

8.5.1 1-NRTA from Equivalence on Timed Words

We replace cK(u) by σ(u) in the definition of K-monotonicity.

Given a K-monotonic and L-preserving finite index equivalence ≈ ⊆ TΣ∗ × TΣ∗ we define a
transition ([u]≈, [v]≈, a, φ[σ(v)]≡K

, 1) ∈ T≈ iff there is t ∈ R≥0 such that u(t · a) ≈ v.

Proposition 30. Suppose ≈ is a K-monotonic, L-preserving finite index equivalence. Then
BL≈ = ([TΣ∗]≈, [ε]≈, T≈, FL

≈) is a 1-NRDTA and we have L = L(BL≈).

Proof. By K-monotonicity and L-preservation, BL≈ defines a 1-NRTA. A similar proof to the
proof of Proposition 26 shows that for every timed word u, the set of configurations reached
in BL≈ on reading u starting from the initial configuration ([ε]≈, 0) is given by {([u]≈, σ(u))}.
Thus, BL≈ is deterministic and accepts L by definition of FL.

91

Kyveli Doveri

8.5.2 A Myhill-Nerode Theorem for Languages with No Resets
Given L and K we define the syntactic equivalence �L,K ⊆ TΣ∗ × TΣ∗ for 1-NRTAs by
u �L,K iff σ(u) ≡K σ(v) and τσ(u),σ(v)(u−1L) = v−1L.

Theorem 15 (Counterpart of Theorem 14.).

• L ⊆ TΣ∗ is a language definable by a 1-NRTA if and only if there is a constant K ∈ N
such that �L,K is K-monotonic and has finite index.

• �L,K is coarser than any K-monotonic and L-preserving equivalence.

Proof. We adapt the proof of Theorem 14, without the use of strict 1-IRTAs.

We can easily adapt Proposition 28 and Proposition 29 to show that given a 1-NRDTA with
greatest constant less than or equal to K accepting L, we can compute BL�L,K .

Example 33. Figure 8.3 depicts the 1-NRTA BL�L,1 for L = {u ∈ TΣ∗ | σ(u) = 1} and the
equivalence classes of �L,1 are:

[ε]�L,1 = {u ∈ TΣ∗ | σ(u) = 0}, [(2 · a)]�L,1 = {u ∈ TΣ∗ | 1 < σ(u)},
[(1 · a)]�L,1 = L, [(1

2 · a)]�L,1 = {u ∈ TΣ∗ | 0 < σ(u) < 1}.

Example 32 showed that for IRTA, one cannot compare ≈L,K1 and ≈L,K2 even if both are
monotonic. The situation is different in the NRTA case, as shown by the next lemma.

Lemma 12. Assume K ∈ N such that �L,K is K-monotonic and has finite index. Let K < m.
Then �L,m ⊆ �L,K.

Proof. Assume u �L,m v. Let τm be the “τu,v” obtained using the constant m and τK be the
one obtained with K. By hypothesis, we have (1) σ(u) ≡m σ(v) and (2) τm(u−1L) = v−1L.
To show u �L,K v. From σ(u) ≡m σ(v) we deduce σ(u) ≡K σ(v) (because ≡m ⊆ ≡K). It
remains to show τK(u−1L) = v−1L.

For that we use a 1-NRDTA with greatest constant less than or equal to K accepting L which
exists since �L,K is K-monotonic and has finite index (take for example BL�L,K). Let q be the
state reached on u. Therefore, u−1L = L(q, σ(u)). By Lemma 10, τK(u−1L) = L(q, σ(v)).
Since K < m, we can apply Lemma 10 once again with the constant m, to get τm(u−1L) =
L(q, σ(v)). This shows τK(u−1L) = τm(u−1L) and from (2), we deduce τK(u−1L) = v−1L.

92

Chapter 8. A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH
INTEGER RESETS

εstart

(1
2 · a)

(1 · a)(2 · a)
a, 1 < x, 1

a, x = 1, 1

a, 0 < x < 1, 1

a, x = 0, 1

a, 1 < x, 1

a, 0 < x < 1, 1

a, x = 1, 1

a, 1 < x, 1

a, x = 1, 1
a, 1 < x, 1

Figure 8.3: A 1-NRTA BL�L,1 accepting L = {u ∈ TΣ∗ | σ(u) = 1}.

93

Chapter 9

CONCLUSIONS

In this thesis, we have introduced a unified approach for solving the inclusion problem,
leveraging quasiorders to prune the search for counterexamples to inclusion. Additionally, we
have established a Myhill-Nerode theorem for timed languages with integer resets.

9.1 A Uniform Approach for Inclusion Problems

We presented a uniform approach for solving the language inclusion problem Lω(A) ⊆ Lω(B)
between languages of infinite words given by automata, for different decidable cases.

Our approach is conceptually simple: Using quasiorders on finite words we compute a finite
subset S of ultimately periodic words of Lω(A) that is sufficient for solving the inclusion
problem. We compute S through least fixpoint computations for the languages of finite prefixes
and periods of ultimately periodic words. The functions to iterate for these fixpoints are
readily derived from the automaton A and the fixpoints converge in finitely many iterations
thanks to the “well”-property of our quasiorders. Finally, we decide the inclusion by a
straightforward membership check on the elements of S. Additionally, to guarantee that this
approach is feasible the well-quasiorders need to be Lω(B)-preserving, a property ensuring
that counterexamples to inclusion are preserved, and they need to verify some monotonicity
conditions w.r.t. word concatenation ensuring computability of the subset S.

We demonstrated the generality of our approach by applying it to various decidable inclusion
problems. Specifically, we defined algorithms for the inclusion problem between Büchi
Automata, the inclusion of a Büchi Pushdown Automaton into a Büchi Automaton and, the
inclusion between Büchi Visibly Pushdown Automata.

We categorize our algorithms into two types. The first type uses a pair of separate quasiorders,
where the first quasiorder compares prefixes and the second one compares periods of ultimately
periodic words. The second type is our FORQ-based algorithm using one quasiorder for the
prefixes and a family of quasiorders for the periods, each of them depending on a distinct
prefix.

95

Kyveli Doveri

9.1.1 Two-Quasiorders Algorithms
We defined algorithms parameterized by a pair of quasiorders to address the inclusion problem
between Büchi Automata, the inclusion of a Büchi Pushdown Automaton into a Büchi
Automaton, and the inclusion between Büchi Visibly Pushdown Automata.

We presented different pairs of quasiorders to be used in our algorithms, particularly focusing
on state-based quasiorders. State-based quasiorders are defined from the automaton B and
compare words based on the states the words connect in the automaton. These quasiorders are
interesting as they enable algorithms that exclusively manipulate the states of the automata
A and B.

Our algorithms were implemented for the inclusion between Büchi Automata and the inclusion
between Büchi Visibly Pushdown Automata. In both cases, we instantiated the algorithms
with state-based pairs of quasiorders. Our implementations were competitive against state-
of-the-art tools, thus showing the benefits of having separate quasiorders for prefixes and
periods.

9.1.2 FORQ-based Algorithm
We further refined the two-quasiorders approach by replacing the quasiorder for the periods
by a family of right quasiorders, paving the way for even more efficient inclusion algorithms.
Families of right quasiorders, extend the notion of family of right congruences introduced in
the nineties by Maler and Staiger [60, 61].

A significant difference of our FORQ-based inclusion algorithm compared to the two-quasiorders
approach is the increased number of fixpoint computations that, counterintuitively, yield
better scalability. Indeed our prototype, FORKLIFT, which implements the FORQ-based
algorithm, scales up well on benchmarks taken from real applications in verification and theo-
rem proving. Notably, it outperforms the implementation of our two-quasiorders algorithm
on these benchmarks.

Given that the inclusion problem between Büchi automata is PSpace-complete, it is important
to have different heuristics for solving it. The FORQ heuristic stands out as a promising
approach and we expect the notion of FORQ to have impact beyond the inclusion problem,
e.g., in learning [7] and complementation [57].

9.1.3 Future Work
There are various quasiorders that can be used in our algorithms, offering flexibility within
the framework. For instance, a class of relations that yields good results in practice are the
simulation relations [3] on the states of the automata. Parolini [70] defined several quasiorders
enhanced with simulation relations on the states of B to instantiate our two-quasiorders
algorithm for the inclusion between Büchi Automata. A future direction would be to also
define FORQs enhanced with simulations and empirically evaluate the resulting algorithms.

Regarding the inclusion between ω-visibly pushdown languages, it would be interesting to
study whether FORQs can be extended to this setting.

96

Chapter 9. CONCLUSIONS

Finally, there are other decidable inclusion problems that we can consider, such as the inclusion
of a context-free language into a superdeterministic context-free language [73].

9.2 A Myhill-Nerode Theorem for Timed Languages
We have presented a Myhill-Nerode style characterization for timed languages accepted by
timed automata with integer resets. This characterization leads to the construction of a
canonical form for the class.

The three main ingredients of our characterization are: (1) the unique value cK(u) attained by
the clock after reading a word u in any strict 1-IRTA of greatest constant K (Definition 8.1.1),
(2) the K-monotonicity conditions (Definition 8.2.1) which enable building a strict 1-IRTA
from an equivalence on timed words and (3) the final equivalence ≈L,K (Definition 8.3.1)
which in turn uses a rescaling function. We have shown that a timed language is accepted
by an IRTA iff there is a K for which ≈L,K is K-monotonic and has finite index. From
the equivalence ≈L,K we can define a strict 1-IRTA AL≈L,K that can be effectively computed
starting from an IRTA with maximum constant at most K. We have also adapted these
ingredients to the class of timed automata with no resets.

9.2.1 Future Work
At the moment, there is no learning algorithm that can generate an IRTA for systems that
are known to satisfy the integer reset assumption. We hope that our study of a Nerode-style
equivalence for this class lays the foundation for learning algorithms.

Another direction for future work is to study more in depth how the equivalences ≈L,K for
different constants K compare and to determine the smallest K for which the right-hand-side
of the characterization works.

9.3 Quasiorders in Action
In conclusion, this thesis has demonstrated that quasiorders are both of theoretical and
practical interest.

Indeed, we solved several inclusion problems thanks to quasiorders. Compared to the
classical approach that complements, intersects and checks for emptiness, quasiorders are
more versatile as they can be applied to solve inclusion problems even when complementation
is not possible [69]. They are at the core of all algorithms presented in this thesis and, as
demonstrated by our empirical evaluation, they are impactful in practice.

Moreover, using strengthened quasiorders (equivalence relations), we presented a computable
canonical form for a subclass of regular timed languages. This result contributes to our
understanding of timed languages. It also holds potential applications such as learning
algorithms and even language inlcusion problems.

97

BIBLIOGRAPHY

[1] Parosh Aziz Abdulla et al. “Simulation Subsumption in Ramsey-Based Büchi Automata
Universality and Inclusion Testing”. In: CAV’10: Proc. 20th Int. Conf. on Computer
Aided Verification. 2010, pp. 132–147.

[2] Parosh Aziz Abdulla et al. “When Simulation Meets Antichains”. In: TACAS’10: Proc.
16th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems.
2010, pp. 158–174.

[3] Parosh Aziz Abdulla et al. “Advanced Ramsey-Based Büchi Automata Inclusion Testing”.
In: CONCUR’11: Proc. 22nd Int. Conf. on Concurrency Theory. 2011, pp. 187–202.

[4] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theoretical
Computer Science 126.2 (1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8.

[5] Rajeev Alur and P. Madhusudan. “Visibly Pushdown Languages”. In: STOC’04: Proc.
36th Ann. ACM Symp. on Theory of Computing. ACM, 2004, pp. 202–211.

[6] Jie An et al. “Learning Nondeterministic Real-Time Automata”. In: ACM Transactions
on Embedded Computing Systems 20.5s (2021), pp. 1–26. doi: 10.1145/3477030.

[7] Dana Angluin, Udi Boker, and Dana Fisman. “Families of DFAs as Acceptors of
ω-Regular Languages”. In: Logical Methods in Computer Science 14 (2018), 11:1–11:14.

[8] Christel Baier et al. “When Are Timed Automata Determinizable?” In: International
Colloquium on Automata, Languages and Programming. 2009, pp. 43–54.

[9] BAIT: An ω-regular language inclusion checker. https://github.com/parof/bait.
Accessed: 2022-01-17.

[10] Devendra Bhave and Shibashis Guha. “Adding Dense-Timed Stack to Integer Reset
Timed Automata”. In: RP’17: Proc. 11th International Conference on Reachability
Problems. Vol. 10506. LNCS. Springer, 2017, pp. 9–25. doi: 10.1007/978-3-319-
67089-8_2.

[11] Mikołaj Bojańczyk and Sławomir Lasota. “A Machine-Independent Characterization
of Timed Languages”. In: ICALP’12: Proc. of the 39th Int. Colloquium of Automata,
Languages and Programming. Vol. 7392. Springer, 2012, pp. 92–103. doi: 10.1007/978-
3-642-31585-5_12.

[12] Filippo Bonchi and Damien Pous. “Checking NFA Equivalence with Bisimulations up
to Congruence”. In: Proc. of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 2013, 457–468.

[13] Ahmed Bouajjani et al. “Antichain-Based Universality and Inclusion Testing over Non-
deterministic Finite Tree Automata”. In: CIAA’08: Proc. Int. Conf. on Implementation

99

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/3477030
https://github.com/parof/bait
https://doi.org/10.1007/978-3-319-67089-8_2
https://doi.org/10.1007/978-3-319-67089-8_2
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-642-31585-5_12

Kyveli Doveri

and Applications of Automata. LNCS. Springer, 2008, pp. 57–67. doi: 10.1007/978-3-
540-70844-5_7.

[14] Patricia Bouyer et al. “Updatable timed automata”. In: Theoretical Computer Science
321.2-3 (2004), pp. 291–345. doi: 10.1016/j.tcs.2004.04.003.

[15] Véronique Bruyère, Marc Ducobu, and Olivier Gauwin. “Visibly Pushdown Automata:
Universality and Inclusion via Antichains”. In: LATA’13: Proc. Int. Conf. on Language
and Automata Theory and Applications. LNCS. Springer, 2013. doi: 10.1007/978-3-
642-37064-9_18.

[16] S. Tripakis C. Daws A. Olivero and S. Yovine. “The tool KRONOS”. In: In Proc. Hybrid
Systems III: Verification and Control (1995), volume 1066 of LNCS, pp. 208–219.

[17] Hugues Calbrix, Maurice Nivat, and Andreas Podelski. “Ultimately Periodic Words of
Rational ω-Languages”. In: Proc. Int. Symp. on Mathematical Foundations of Program-
ming Semantics (MFPS). LNCS. Springer, 1994, pp. 554–566.

[18] Lorenzo Clemente and Richard Mayr. “Efficient reduction of nondeterministic automata
with application to language inclusion testing”. In: Log. Methods Comput. Sci. 15.1
(2019). doi: 10.23638/LMCS-15(1:12)2019.

[19] Rina S. Cohen and Arie Y. Gold. “Theory of ω-languages I: Characterizations of ω-
context-free languages”. In: Journal of Computer and System Sciences 15.2 (1977),
pp. 169–184. doi: 10.1016/S0022-0000(77)80004-4.

[20] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints”. In:
Jan. 1977, pp. 238–252. doi: 10.1145/512950.512973.

[21] Patrick Cousot and Radhia Cousot. “Systematic Design of Program Analysis Frame-
works.” In: Jan. 1979, pp. 269–282. doi: 10.1145/567752.567778.

[22] Stefano Crespi Reghizzi and Dino Mandrioli. “Operator Precedence and the Visibly Push-
down Property”. In: Journal of Computer and System Sciences 78.6 (2012), pp. 1837–
1867. doi: 10.1016/j.jcss.2011.12.006.

[23] Aldo de Luca and Stefano Varricchio. “Well Quasi-Orders and Regular Languages”. In:
Acta Informatica 31.6 (1994), pp. 539–557. doi: 10.1007/BF01213206.

[24] M. De Wulf et al. “Antichains: A New Algorithm for Checking Universality of Finite
Automata”. In: CAV’06: Proc. 16th Int. Conf. on Computer Aided Verification. Springer,
2006, pp. 17–30.

[25] K. Doveri et al. Büchi Automata benchmarks for language inclusion. https://github.
com/parof/buchi-automata-benchmark. 2021.

[26] Kyveli Doveri, Pierre Ganty, and Luka Hadzi-Djokic. “Antichains Algorithms for the
Inclusion Problem Between omega-VPL”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by Sriram Sankaranarayanan and Natasha Sharygina.
Cham: Springer Nature Switzerland, 2023, pp. 290–307.

[27] Kyveli Doveri, Pierre Ganty, and Luka Hadzi-Djokic. omegaVPLinc v1.1. Version v1.1.
Jan. 2023. doi: 10.5281/zenodo.7506895.

[28] Kyveli Doveri, Pierre Ganty, and Nicolas Mazzocchi. “FORQ-Based Language Inclusion
Formal Testing”. In: CAV’22: Proc. 32nd Int. Conf. on Computer Aided Verification.
Springer, 2022, 109–129.

100

https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/978-3-642-37064-9_18
https://doi.org/10.1007/978-3-642-37064-9_18
https://doi.org/10.23638/LMCS-15(1:12)2019
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1007/BF01213206
https://github.com/parof/buchi-automata-benchmark
https://github.com/parof/buchi-automata-benchmark
https://doi.org/10.5281/zenodo.7506895

BIBLIOGRAPHY

[29] Kyveli Doveri et al. “Inclusion Testing of Büchi Automata Based on Well-Quasiorders”.
In: CONCUR’21: Proc. 32nd Int. Conf. on Concurrency Theory. LIPIcs. Schloss
Dagstuhl, 2021, 3:1–3:22.

[30] Laurent Doyen and Jean-François Raskin. “Antichains for the Automata-Based Approach
to Model-Checking”. In: Logical Methods in Computer Science 5.1 (2009). Ed. by Orna
Grumberg. doi: 10.2168/lmcs-5(1:5)2009.

[31] Laurent Doyen and Jean-François Raskin. “Antichain Algorithms for Finite Automata”.
In: Tools and Algorithms for the Construction and Analysis of Systems. LNCS. Springer,
2010, pp. 2–22.

[32] Alexandre Duret-Lutz et al. “From Spot 2.0 to Spot 2.10: What’s New?” In: CAV: 34th
International Conference on Computer Aided Verification. LNCS, pp. 174–187.

[33] Alexandre Duret-Lutz et al. “Spot 2.0 - A Framework for LTL and ω-Automata
Manipulation”. In: ATVA: 14th International Conference on Automated Technology for
Verification and Analysis. LNCS. 2016. doi: 10.1007/978-3-319-46520-3_8.

[34] Javier Esparza. “Automata theory – An algorithmic approach.” In: (2017).
[35] Robert W. Floyd. “Syntactic Analysis and Operator Precedence”. In: J. ACM 10.3

(1963), 316–333. doi: 10.1145/321172.321179.
[36] Seth Fogarty and Moshe Y. Vardi. “Efficient Büchi Universality Checking”. In: TACAS’10:

Proc. 16th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems. LNCS. Springer, 2010, pp. 205–220.

[37] Oliver Friedmann, Felix Klaedtke, and Martin Lange. “Ramsey Goes Visibly Pushdown”.
In: ICALP’13: Proc. 40th Int. Coll. on Automata, Languages, and Programming. LNCS.
Springer, 2013, pp. 224–237. doi: 10.1007/978-3-642-39212-2_22.

[38] Oliver Friedmann, Felix Klaedtke, and Martin Lange. “Ramsey-Based Inclusion Checking
for Visibly Pushdown Automata”. In: ACM Transactions on Computational Logic 16.4
(2015), pp. 1–24. doi: 10.1145/2774221.

[39] Pierre Ganty, Francesco Ranzato, and Pedro Valero. “Language Inclusion Algorithms
as Complete Abstract Interpretations”. In: Static Analysis. Springer, 2019, pp. 140–161.

[40] Pierre Ganty, Francesco Ranzato, and Pedro Valero. “Complete Abstractions for Check-
ing Language Inclusion”. In: ACM Trans. Comput. Logic 22.4 (2021), pp. 1–40.

[41] GOAL: Graphical Tool for Omega-Automata and Logics. http://goal.im.ntu.edu.
tw/wiki/doku.php. Accessed: 2022-01-17.

[42] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. “Learning of Event-Recording
Automata”. In: Theoretical Computer Science 411.47 (2010), pp. 4029–4054. doi: 10.
1016/j.tcs.2010.07.008.

[43] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. “Software Model Checking
for People Who Love Automata”. In: CAV: 25th International Conference on Computer
Aided Verification. LNCS. 2013, 36–52. doi: 10.1007/978-3-642-39799-8_2.

[44] Matthias Heizmann et al. “Ultimate Automizer and the Search for Perfect Interpolants
- (Competition Contribution)”. In: TACAS’18: Proc. 24th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems. LNCS. Springer, 2018. doi:
10.1007/978-3-319-89963-3_30.

[45] Thomas A. Henzinger et al. “Regular Methods for Operator Precedence Languages”.
In: 50th International Colloquium on Automata, Languages, and Programming (ICALP
2023). Ed. by Kousha Etessami, Uriel Feige, and Gabriele Puppis. Vol. 261. Leibniz

101

https://doi.org/10.2168/lmcs-5(1:5)2009
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/321172.321179
https://doi.org/10.1007/978-3-642-39212-2_22
https://doi.org/10.1145/2774221
http://goal.im.ntu.edu.tw/wiki/doku.php
http://goal.im.ntu.edu.tw/wiki/doku.php
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-89963-3_30

Kyveli Doveri

International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023, 129:1–129:20.

[46] Philipp Hieronymi et al. “Decidability for Sturmian Words”. In: CSL: 30th EACSL
Annual Conference on Computer Science Logic. LIPIcs. 2022, 24:1–24:23. doi: 10.4230/
LIPIcs.CSL.2022.24.

[47] Martin Hofmann and Wei Chen. “Abstract Interpretation from Büchi Automata”. In:
Proc. of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). ACM Press, 2014.

[48] John E. Hopcroft and Jeff D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979.

[49] P. Pettersson K. G. Larsen and W. Yi. “UPPAAL in a nutshell”. In: Journal of Software
Tools for Technology Transfer. 1997, pp. 134–152.

[50] Takumi Kasai and Shigeki Iwata. Some Problems in Formal Language Theory Known
as Decidable are Proved EXPTIME Complete. 1992.

[51] Igor Konnov. “Handbook of Model Checking by Edmund M. Clarke, Thomas A. Hen-
zinger, Helmut Veith, and Roderick Bloem (eds), published by Springer International
Publishing AG, Cham, Switzerland, 2018.” In: (Jan. 2019).

[52] Denis Kuperberg, Laureline Pinault, and Damien Pous. “Coinductive Algorithms for
Büchi Automata”. In: Fundam. Informaticae 180.4 (2021), pp. 206–220. doi: 10.3233/
FI-2021-2046.

[53] Orna Kupferman. “Automata Theory and Model Checking”. In: Handbook of Model
Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International Publishing,
2018, pp. 107–151. doi: 10.1007/978-3-319-10575-8_4.

[54] Orna Kupferman and Moshe Y. Vardi. “Verification of Fair Transition Systems”. In:
CAV: International Conference on Computer Aided Verification. LNCS. 1996, pp. 372–
382. doi: 10.1007/3-540-61474-5_84.

[55] Yong Li et al. “ROLL 1.0: ω-Regular Language Learning Library”. In: TACAS: 25th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. LNCS. 2019, pp. 365–371. doi: 10.1007/978-3-030-17462-0_23.

[56] Yong Li et al. “A novel learning algorithm for Büchi automata based on family of DFAs
and classification trees”. In: Information and Computation (2020), pp. 208–226. doi:
10.1016/j.ic.2020.104678.

[57] Yong Li et al. “Congruence Relations for Büchi Automata”. In: FM: Formal Methods.
LNCS. 2021, pp. 465–482.

[58] Oded Maler and Amir Pnueli. “On Recognizable Timed Languages”. In: FoSSaCS’04:
Proc. of the Int. Conf. on Foundations of Software Science and Computation Structures.
Vol. 2987. LNCS. Springer, 2004, pp. 348–362. doi: 10.1007/978-3-540-24727-2_25.

[59] Oded Maler and Ludwig Staiger. “On Syntactic Congruences for ω-Languages”. In:
STACS: 10th Annual Symposium on Theoretical Aspects of Computer Science. LNCS.
1993, pp. 93–112. doi: 10.1007/3-540-56503-5_58.

[60] Oded Maler and Ludwig Staiger. “On Syntactic Congruences for ω-Languages”. In:
Theor. Comput. Sci. 183.1 (1997). doi: 10.1016/S0304-3975(96)00312-X.

[61] Oded Maler and Ludwig Staiger. On syntactic congruences for ω-languages. Tech. rep.
Verimag, France, 2008.

102

https://doi.org/10.4230/LIPIcs.CSL.2022.24
https://doi.org/10.4230/LIPIcs.CSL.2022.24
https://doi.org/10.3233/FI-2021-2046
https://doi.org/10.3233/FI-2021-2046
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/3-540-61474-5_84
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.1007/3-540-56503-5_58
https://doi.org/10.1016/S0304-3975(96)00312-X

BIBLIOGRAPHY

[62] Lakshmi Manasa and Krishna S. Integer Reset Timed Automata: Clock Reduction and
Determinizability. 2010. eprint: 1001.1215 (cs).

[63] Roland Meyer, Sebastian Muskalla, and Elisabeth Neumann. Liveness Verification and
Synthesis: New Algorithms for Recursive Programs. 2017. arXiv: 1701.02947 [cs.FL].

[64] Roland Meyer, Sebastian Muskalla, and Elisabeth Neumann. “Liveness Verification and
Synthesis: New Algorithms for Recursive Programs”. In: CoRR abs/1701.02947 (2017).
arXiv: 1701.02947.

[65] M. Michel. Complementation Is More Difficult with Automata on Infinite Words. Tech.
rep. Paris: CNET, 1988.

[66] Piterman Nir. “From Nondeterministic Büchi and Streett Automata to Deterministic
Parity Automata”. In: Logical Methods in Computer Science 3.3 (2007), pp. 1–21. doi:
10.2168/lmcs-3(3:5)2007.

[67] Reed Oei et al. Pecan: An Automated Theorem Prover for Automatic Sequences using
Büchi Automata. 2021.

[68] Reed Oei et al. “Pecan: An Automated Theorem Prover for Automatic Sequences using
Büchi Automata”. In: CoRR abs/2102.01727 (2021).

[69] J. Ouaknine and J. Worrell. “On the language inclusion problem for timed automata:
closing a decidability gap”. In: Proceedings of the 19th Annual IEEE Symposium on
Logic in Computer Science, 2004. 2004, pp. 54–63. doi: 10.1109/LICS.2004.1319600.

[70] Francesco Parolini. “Simulation-based Inclusion Checking Algorithms for omega-Languages”.
In: Master Thesis, Università degli Studi di Padova. 2020.

[71] RABIT/Reduce: Tools for language inclusion testing and reduction of nondeterministic
Büchi automata and NFA. http://www.languageinclusion.org/doku.php?id=
tools. Accessed: 2022-01-17.

[72] ROLL library: Regular Omega Language Learning library. https://github.com/ISCAS-
PMC/roll-library. Accessed: 2022-01-17.

[73] E. P. Freidman S. A. Greibach and. “Superdeterministic PDAs: A subcase with a
decidable inclusion problem”. In: Journal of the ACM 27.4 (1980), pp. 675–700.

[74] Spot: a platform for LTL and ω-automata manipulation. https://spot.lrde.epita.
fr/. Accessed: 2022-01-17.

[75] Jan Springintveld and Frits W. Vaandrager. “Minimizable Timed Automata”. In:
FTRTFT’96: Proc. of 4th Int. Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems. Vol. 1135. LNCS. Springer, 1996, pp. 130–147. doi: 10.1007/3-
540-61648-9_38.

[76] P. Vijay Suman et al. “Timed Automata with Integer Resets: Language Inclusion and
Expressiveness”. In: FORMATS’08: Proc. of the Int. Conf. on Formal Modeling and
Analysis of Timed Systems. Vol. 5215. Springer, 2008, pp. 78–92. doi: 10.1007/978-3-
540-85778-5_7.

[77] Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. “GOAL for Games, Omega-
Automata, and Logics”. In: CAV: 25th International Conference on Computer Aided
Verification. LNCS. 2013, pp. 883–889. doi: 10.1007/978-3-642-39799-8_62.

[78] Ming-Hsien Tsai et al. “State of Büchi Complementation”. In: Logical Methods in
Computer Science 10.4 (2014). Ed. by Pierre Wolper, pp. 261–271.

[79] Pedro Valero. “On the Use of Quasiorders in Formal Language Theory”. In: Ph.D Thesis,
Universidad Politécnica de Madrid. 2020.

103

1001.1215
https://arxiv.org/abs/1701.02947
https://arxiv.org/abs/1701.02947
https://doi.org/10.2168/lmcs-3(3:5)2007
https://doi.org/10.1109/LICS.2004.1319600
http://www.languageinclusion.org/doku.php?id=tools
http://www.languageinclusion.org/doku.php?id=tools
https://github.com/ISCAS-PMC/roll-library
https://github.com/ISCAS-PMC/roll-library
https://spot.lrde.epita.fr/
https://spot.lrde.epita.fr/
https://doi.org/10.1007/3-540-61648-9_38
https://doi.org/10.1007/3-540-61648-9_38
https://doi.org/10.1007/978-3-540-85778-5_7
https://doi.org/10.1007/978-3-540-85778-5_7
https://doi.org/10.1007/978-3-642-39799-8_62

Kyveli Doveri

[80] Masaki Waga. “Active Learning of Deterministic Timed Automata with Myhill-Nerode
Style Characterization”. In: CAV’23: Proc. of the 35th Int. Conf. on Computer Aided
Verification. Vol. 13964. LNCS. Springer, 2023, pp. 3–26. doi: 10.1007/978-3-031-
37706-8_1.

[81] William M. Waite and Gerhard Goos. “Properties of Programming Languages”. In:
Compiler Construction. New York, NY: Springer New York, 1984, pp. 15–45. doi:
10.1007/978-1-4612-5192-7_2.

104

https://doi.org/10.1007/978-3-031-37706-8_1
https://doi.org/10.1007/978-3-031-37706-8_1
https://doi.org/10.1007/978-1-4612-5192-7_2

	Acknowledgment
	Abstract
	Resumen
	List of Figures
	Abbreviations and acronyms
	1 INTRODUCTION
	1.1 Formal Languages
	1.2 The Language Inclusion Problem
	1.2.1 Quasiorders for the Inclusion
	1.2.2 Starting Point: A Quasiorder-Based Framework
	1.2.3 Extending the Framework

	1.3 A Myhill-Nerode Theorem for Timed Languages
	1.4 Thesis Contributions
	1.4.1 Inclusion for Infinite Words
	1.4.2 Improved Inclusion with Families of Quasiorders
	1.4.3 Inclusion for Visibly Pushdown Languages
	1.4.4 A Myhill-Nerode Theorem for Timed Automata with Integer Resets

	2 RELATED WORKS
	3 PRELIMINARIES
	3.1 Words and Languages
	3.2 Well-Quasiorders, Kleene Iterates and Monotonicity
	3.3 Finite Automata
	3.4 Pushdown Automata
	3.5 Context-free Grammar
	3.6 Visibly Pushdown Automata
	3.7 Timed Automata

	4 INCLUSION CHECKING OF LANGUAGES OF FINITE WORDS
	4.1 Overview
	4.2 An Algorithmic Framework for Checking Inclusion
	4.2.1 Reduction to a Finite Basis
	4.2.2 Fixpoint Characterization
	4.2.3 Basis Detection

	4.3 Algorithm
	4.3.1 Antichains Optimization
	4.3.2 The Coarser the Better

	4.4 Quasiorders for Regular Languages
	4.4.1 State-based Quasiorders
	4.4.2 A Syntactic Quasiorder

	4.5 State-based Algorithms
	4.5.1 Data Structures
	4.5.2 Detailed Algorithm for B
	4.5.3 Illustrative Example

	5 INCLUSION FOR INFINITE WORDS
	5.1 Overview
	5.2 Framework
	5.2.1 Fixpoint Characterization
	5.2.2 Basis Detection
	5.2.3 Algorithm

	5.3 Suitable Pairs of Quasiorders
	5.3.1 State-based Pairs
	5.3.2 A Syntactic Pair

	5.4 State-based Algorithm
	5.4.1 Fixpoint Computation
	5.4.2 Membership Check
	5.4.3 Algorithm and Complexity
	5.4.4 Illustrative Example

	5.5 Extension: ω-context free ⊆ ω-regular
	5.5.1 A Sufficient Subset of Decompositions
	5.5.2 Fixpoint Computation of a Finite Basis
	Quasiorders for the Context-Free Case

	6 FORQ-BASED INCLUSION
	6.1 Foundations
	6.2 The FORQ of a BA
	6.3 FORQ-based Algorithm
	6.3.1 Why a basis w.r.t. -1 is computed?
	6.3.2 Complexity

	6.4 Discussions
	6.4.1 Origin of FORQ
	6.4.2 Less membership queries

	6.5 Implementation and experiments
	6.5.1 Experimental Evaluation

	7 INCLUSION FOR VISIBLY PUSHDOWN LANGUAGES
	7.1 Overview
	7.2 Reduction to a Finite Basis
	7.2.1 A Sufficient Subset of Legitimate Decompositions
	7.2.2 Reduction to a Finite Basis

	7.3 Fixpoint Characterization
	7.4 Monotonicity Requirements
	7.5 Quasiorders for ω-VPL
	7.5.1 A State-based Pair
	7.5.2 A Syntactic Pair

	7.6 Algorithm
	7.6.1 Antichains Everywhere

	7.7 State-based Algorithm
	7.7.1 Fixpoint Computation
	7.7.2 Membership Check

	7.8 Experiments

	8 A MYHILL-NERODE THEOREM FOR TIMED AUTOMATA WITH INTEGER RESETS
	8.1 Languages with Integer Resets
	8.1.1 The subclass of strict 1-IRTA

	8.2 Strict 1-IRDTA from Equivalence on Timed Words
	8.3 A Myhill-Nerode Theorem for Languages with Integer Resets
	8.3.1 Auxiliary Definitions
	8.3.2 Syntactic Equivalence

	8.4 Effectively Computing 𝒜 ≈ L,K
	8.5 Languages with No Resets
	8.5.1 1-NRTA from Equivalence on Timed Words
	8.5.2 A Myhill-Nerode Theorem for Languages with No Resets

	9 CONCLUSIONS
	9.1 A Uniform Approach for Inclusion Problems
	9.1.1 Two-Quasiorders Algorithms
	9.1.2 FORQ-based Algorithm
	9.1.3 Future Work

	9.2 A Myhill-Nerode Theorem for Timed Languages
	9.2.1 Future Work

	9.3 Quasiorders in Action

	BIBLIOGRAPHY

